A Genome-Scale Antibiotic Screen in Serratia marcescens Identifies YdgH as a Conserved Modifier of Cephalosporin and Detergent Susceptibility.

Jacob E Lazarus, Alyson R Warr, Kathleen A Westervelt, David C Hooper, Matthew K Waldor
Author Information
  1. Jacob E Lazarus: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ORCID
  2. Alyson R Warr: Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA. ORCID
  3. Kathleen A Westervelt: Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
  4. David C Hooper: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ORCID
  5. Matthew K Waldor: Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA. ORCID

Abstract

Serratia marcescens, a member of the order Enterobacterales, is adept at colonizing health care environments and is an important cause of invasive infections. Antibiotic resistance is a daunting problem in S. marcescens because, in addition to plasmid-mediated mechanisms, most isolates have considerable intrinsic resistance to multiple antibiotic classes. To discover endogenous modifiers of antibiotic susceptibility in S. marcescens, a high-density transposon insertion library was subjected to sub-MICs of two cephalosporins, cefoxitin, and cefepime, as well as the fluoroquinolone ciprofloxacin. Comparisons of transposon insertion abundance before and after antibiotic exposure identified hundreds of potential modifiers of susceptibility to these agents. Using single-gene deletions, we validated several candidate modifiers of cefoxitin susceptibility and chose , a gene of unknown function, for further characterization. In addition to cefoxitin, deletion of y in S. marcescens resulted in decreased susceptibility to multiple third-generation cephalosporins and, in contrast, to increased susceptibility to both cationic and anionic detergents. YdgH is highly conserved throughout the Enterobacterales, and we observed similar phenotypes in Escherichia coli O157:H7 and Enterobacter cloacae mutants. YdgH is predicted to localize to the periplasm, and we speculate that it may be involved there in cell envelope homeostasis. Collectively, our findings provide insight into chromosomal mediators of antibiotic resistance in S. marcescens and will serve as a resource for further investigations of this important pathogen.

Keywords

References

  1. PLoS Pathog. 2018 Aug 31;14(8):e1007272 [PMID: 30169545]
  2. J Theor Biol. 2011 Oct 21;287:92-9 [PMID: 21827769]
  3. mSystems. 2020 Mar 3;5(2): [PMID: 32127419]
  4. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76 [PMID: 19995920]
  5. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  6. Nat Biotechnol. 2016 Jan;34(1):104-10 [PMID: 26641532]
  7. Ann Clin Microbiol Antimicrob. 2017 Mar 29;16(1):19 [PMID: 28356113]
  8. Nucleic Acids Res. 2000 Jan 1;28(1):60-4 [PMID: 10592181]
  9. J Bacteriol. 2016 Mar 31;198(8):1230-40 [PMID: 26833417]
  10. BMC Infect Dis. 2015 Jan 13;15:11 [PMID: 25582674]
  11. Lancet Infect Dis. 2014 Aug;14(8):742-750 [PMID: 25022435]
  12. Antimicrob Agents Chemother. 2019 Sep 23;63(10): [PMID: 31383668]
  13. Cell. 2017 Apr 6;169(2):273-285.e17 [PMID: 28388411]
  14. Chemistry. 2006 Aug 25;12(25):6692-700 [PMID: 16807947]
  15. J Appl Microbiol. 2003;95(1):186-95 [PMID: 12807470]
  16. BMC Bioinformatics. 2017 Jul 6;18(1):326 [PMID: 28683752]
  17. PLoS Pathog. 2019 Aug 12;15(8):e1007652 [PMID: 31404118]
  18. BMC Genomics. 2008 Oct 16;9:488 [PMID: 18925949]
  19. Curr Protoc Bioinformatics. 2013 Jun;Chapter 3:Unit3.1 [PMID: 23749753]
  20. J Antimicrob Chemother. 2006 Dec;58(6):1274-8 [PMID: 17040923]
  21. Gene. 2002 Aug 21;296(1-2):179-85 [PMID: 12383515]
  22. Front Microbiol. 2018 May 11;9:828 [PMID: 29867787]
  23. Clin Infect Dis. 2014 Jun;58(11):1554-63 [PMID: 24647022]
  24. mBio. 2014 Sep 02;5(5):e01729-14 [PMID: 25182329]
  25. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  26. Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 [PMID: 25428365]
  27. J Biol Chem. 2007 Dec 7;282(49):36077-89 [PMID: 17928292]
  28. Nucleic Acids Res. 2013 Oct;41(19):9033-48 [PMID: 23901011]
  29. Mol Microbiol. 2004 Mar;51(6):1801-16 [PMID: 15009903]
  30. Antimicrob Resist Infect Control. 2019 Aug 9;8:135 [PMID: 31413826]
  31. mBio. 2017 May 23;8(3): [PMID: 28536292]
  32. mBio. 2019 Mar 5;10(2): [PMID: 30837332]
  33. Int J Environ Res Public Health. 2019 Feb 20;16(4): [PMID: 30791509]
  34. N Engl J Med. 1979 Apr 19;300(16):887-93 [PMID: 370597]
  35. J Antimicrob Chemother. 2014 Jul;69(7):1825-9 [PMID: 24659751]
  36. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288-1301 [PMID: 27573805]
  37. Clin Microbiol Rev. 2006 Oct;19(4):637-57 [PMID: 17041138]
  38. EMBO J. 2010 Apr 21;29(8):1412-22 [PMID: 20300061]
  39. Nat Rev Microbiol. 2019 Jul;17(7):417-428 [PMID: 31150012]
  40. mBio. 2011 Jan 18;2(1):e00315-10 [PMID: 21253457]
  41. Drugs. 1999;58 Suppl 2:6-10 [PMID: 10553698]
  42. Genome Res. 2016 Aug;26(8):1101-9 [PMID: 27432456]
  43. J Med Microbiol. 2017 May;66(5):551-559 [PMID: 28504927]
  44. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 [PMID: 30395287]
  45. Sci Rep. 2016 Apr 20;6:24648 [PMID: 27095488]
  46. Nucleic Acids Res. 2001 Nov 15;29(22):4724-35 [PMID: 11713323]
  47. Int J Antimicrob Agents. 2003 Jul;22(1):35-47 [PMID: 12842326]
  48. J Biosci Bioeng. 2014 Apr;117(4):437-42 [PMID: 24140104]
  49. Antimicrob Agents Chemother. 2014 Sep;58(9):5181-90 [PMID: 24957827]
  50. Int J Syst Evol Microbiol. 2016 Dec;66(12):5575-5599 [PMID: 27620848]
  51. J Bacteriol. 2020 Dec 23;: [PMID: 33361192]
  52. Nefrologia. 2016 Nov - Dec;36(6):667-673 [PMID: 27595511]
  53. Proc Natl Acad Sci U S A. 2016 May 31;113(22):6283-8 [PMID: 27185914]
  54. Nat Rev Microbiol. 2016 Feb;14(2):119-28 [PMID: 26775926]
  55. Biochimie. 2014 Nov;106:175-9 [PMID: 25046628]
  56. Nucleic Acids Res. 2021 Jan 8;49(D1):D677-D686 [PMID: 33095861]
  57. Clin Microbiol Rev. 2009 Jan;22(1):161-82, Table of Contents [PMID: 19136439]
  58. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  59. J Bacteriol. 2006 Feb;188(4):1660-2 [PMID: 16452451]
  60. Appl Environ Microbiol. 2019 Aug 1;85(16): [PMID: 31201277]
  61. Microbiology (Reading). 2017 Mar;163(3):400-409 [PMID: 28073397]
  62. J Bacteriol. 2000 Oct;182(19):5620-3 [PMID: 10986272]
  63. Phys Chem Chem Phys. 2011 Jan 28;13(4):1521-30 [PMID: 21152583]
  64. Infect Immun. 2011 Jan;79(1):33-43 [PMID: 20974834]
  65. Int J Antimicrob Agents. 2013 Jan;41(1):1-4 [PMID: 23219246]
  66. Int J Infect Dis. 2006 Jul;10(4):320-5 [PMID: 16460982]
  67. PLoS One. 2019 May 21;14(5):e0216581 [PMID: 31112570]
  68. Antimicrob Agents Chemother. 1989 Aug;33(8):1318-25 [PMID: 2679373]
  69. mSystems. 2020 Aug 4;5(4): [PMID: 32753506]
  70. Virulence. 2018 Dec 31;9(1):981-993 [PMID: 29697309]
  71. Antimicrob Agents Chemother. 2000 Nov;44(11):3035-9 [PMID: 11036019]
  72. Enferm Infecc Microbiol Clin. 2017 Dec;35(10):624-629 [PMID: 27495382]
  73. Sci Transl Med. 2018 Jun 13;10(445): [PMID: 29899024]
  74. Nat Rev Microbiol. 2013 Jul;11(7):435-42 [PMID: 23712350]
  75. Nat Rev Genet. 2020 Sep;21(9):526-540 [PMID: 32533119]
  76. J Antimicrob Chemother. 2017 May 1;72(5):1535-1537 [PMID: 28108680]
  77. mSystems. 2016 Jul 12;1(4): [PMID: 27822540]
  78. Clin Infect Dis. 2019 Sep 27;69(8):1446-1455 [PMID: 30838380]
  79. Clin Infect Dis. 2004 Aug 1;39(3):309-17 [PMID: 15306996]
  80. Infect Control Hosp Epidemiol. 2018 Nov;39(11):1307-1315 [PMID: 30284524]
  81. J Clin Microbiol. 2013 Jul;51(7):2295-302 [PMID: 23698525]
  82. Mol Microbiol. 2013 Dec;90(6):1233-48 [PMID: 24325250]
  83. PLoS Genet. 2014 Nov 06;10(11):e1004782 [PMID: 25375795]
  84. J Antimicrob Chemother. 2018 May 1;73(5):1256-1262 [PMID: 29471486]
  85. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W455-9 [PMID: 15980511]
  86. J Bacteriol. 2017 Jul 25;199(16): [PMID: 28559296]
  87. Clin Microbiol Rev. 2011 Oct;24(4):755-91 [PMID: 21976608]
  88. Sci Rep. 2017 Feb 15;7:42483 [PMID: 28198411]
  89. EcoSal Plus. 2018 Nov;8(1): [PMID: 30406744]
  90. Am J Kidney Dis. 2019 Nov;74(5):610-619 [PMID: 31375298]
  91. Comput Appl Biosci. 1992 Jun;8(3):275-82 [PMID: 1633570]

Grants

  1. T32 AI007061/NIAID NIH HHS
  2. R01 AI042347/NIAID NIH HHS
  3. /Howard Hughes Medical Institute (HHMI)
  4. T32AI007061/HHS | National Institutes of Health (NIH)
  5. K08 AI155830/NIAID NIH HHS
  6. R01AI042347/HHS | National Institutes of Health (NIH)
  7. /Harvard Catalyst (Harvard Clinical and Translational Science Center)

MeSH Term

Anti-Bacterial Agents
Cephalosporins
Detergents
Drug Resistance, Bacterial
Serratia marcescens

Chemicals

Anti-Bacterial Agents
Cephalosporins
Detergents

Word Cloud

Created with Highcharts 10.0.0marcescenssusceptibilitySantibioticcefoxitinYdgHSerratiaresistancemodifiersEnterobacteralesimportantAntibioticadditionmultipletransposoninsertioncephalosporinscefepimefluoroquinoloneciprofloxacinmemberorderadeptcolonizinghealthcareenvironmentscauseinvasiveinfectionsdauntingproblemplasmid-mediatedmechanismsisolatesconsiderableintrinsicclassesdiscoverendogenoushigh-densitylibrarysubjectedsub-MICstwowellComparisonsabundanceexposureidentifiedhundredspotentialagentsUsingsingle-genedeletionsvalidatedseveralcandidatechosegeneunknownfunctioncharacterizationdeletionyresulteddecreasedthird-generationcontrastincreasedcationicanionicdetergentshighlyconservedthroughoutobservedsimilarphenotypesEscherichiacoliO157:H7EnterobactercloacaemutantspredictedlocalizeperiplasmspeculatemayinvolvedcellenvelopehomeostasisCollectivelyfindingsprovideinsightchromosomalmediatorswillserveresourceinvestigationspathogenGenome-ScaleScreenIdentifiesConservedModifierCephalosporinDetergentSusceptibilityAmpCTISTnSeqcephalosporin

Similar Articles

Cited By