Degradation of oxytetracycline in aqueous solution by heat-activated peroxydisulfate and peroxymonosulfate oxidation.

Kubra Ulucan-Altuntas, Senem Yazici Guvenc, Emine Can-Güven, Fatih Ilhan, Gamze Varank
Author Information
  1. Kubra Ulucan-Altuntas: Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey. kulucan@yildiz.edu.tr. ORCID
  2. Senem Yazici Guvenc: Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.
  3. Emine Can-Güven: Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.
  4. Fatih Ilhan: Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.
  5. Gamze Varank: Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.

Abstract

Oxytetracycline (OTC) is a broad-spectrum antibiotic that resists biodegradation and poses a risk to the ecosystem. This study investigated the degradation of OTC by heat-activated peroxydisulfate (PDS) and peroxymonosulfate (PMS) processes. Response surface methodology (RSM) was used to evaluate the effect of process parameters, namely initial pH, oxidant concentration, temperature, and reaction time on the OTC removal efficiency. According to the results of the RSM models, all four independent variables were significant for both PDS and PMS processes. The optimum process parameters for the heat-activated PDS process were pH 8.9, PDS concentration 3.9 mM, temperature 72.9°C, and reaction time 26.5 min. For the heat-activated PMS process, optimum conditions were pH 9.0, PMS concentration 4.0 mM, temperature 75.0°C, and reaction time 20.0 min. The predicted OTC removal efficiencies for the PDS and PMS processes were 89.7% and 84.0%, respectively. As a result of the validation experiments conducted at optimum conditions, the obtained OTC removal efficiencies for the PDS and PMS processes were 87.6 ± 4.2 and 80.2± 4.6, respectively. PDS process has higher kinetic constants at all pH values than the PMS process. Both processes were effective in OTC removal from aqueous solution and RSM was efficient in process optimization.

Keywords

References

  1. Aleboyeh A, Daneshvar N, Kasiri MB (2008) Optimization of CI Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem Eng Process Process Intensif 47:827–832 [DOI: 10.1016/j.cep.2007.01.033]
  2. Ao X, Sun W, Li S, Yang C, Li C, Lu Z (2019) Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: influencing factors, degradation pathways, and toxicity evaluation. Chem Eng J 361:1053–1062. https://doi.org/10.1016/j.cej.2018.12.133 [DOI: 10.1016/j.cej.2018.12.133]
  3. Arslan-Alaton I, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A Chem 202:142–153 [DOI: 10.1016/j.jphotochem.2008.11.019]
  4. Asaithambi P, Aziz ARA, Daud WMABW (2016) Integrated ozone-electrocoagulation process for the removal of pollutant from industrial effluent: optimization through response surface methodology. Chem Eng Process Process Intensif 105:92–102 [DOI: 10.1016/j.cep.2016.03.013]
  5. Bashir MJK, Mau Han T, Jun Wei L, Choon Aun N, Abu Amr SS (2016) Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process. Water Sci Technol 73:2704–2712. https://doi.org/10.2166/wst.2016.123 [DOI: 10.2166/wst.2016.123]
  6. Bi W, Wu Y, Dong W (2020) The degradation of oxytetracycline with low concentration of persulfate sodium motivated by copper sulphate under simulated solar light. Chem Eng J 393:122782. https://doi.org/10.1016/j.cej.2019.122782 [DOI: 10.1016/j.cej.2019.122782]
  7. Bilgin Oncu N, Mercan N, Akmehmet Balcioglu I (2015) The impact of ferrous iron/heat-activated persulfate treatment on waste sewage sludge constituents and sorbed antimicrobial micropollutants. Chem Eng J 259:972–980. https://doi.org/10.1016/J.CEJ.2014.08.066 [DOI: 10.1016/J.CEJ.2014.08.066]
  8. Darvishmotevalli M, Zarei A, Moradnia M, Noorisepehr M, Mohammadi H (2019) Optimization of saline wastewater treatment using electrochemical oxidation process: prediction by RSM method. MethodsX 6:1101–1113 [DOI: 10.1016/j.mex.2019.03.015]
  9. El Hadki A, Ulucan-Altuntas K, El Hadki H, Ustundag CB, Kabbaj OK, Dahchour A et al (2021) Removal of oxytetracycline by graphene oxide and Boron-doped reduced graphene oxide: a combined density function theory, molecular dynamics simulation and experimental study. FlatChem 27:100238. https://doi.org/10.1016/J.FLATC.2021.100238 [DOI: 10.1016/J.FLATC.2021.100238]
  10. Figueiredo Filho DB, Júnior JAS, Rocha EC (2011) What is R2 all about? Leviathan (São Paulo):60–68
  11. Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428 [DOI: 10.1021/es1013714]
  12. Ghanbari F, Moradi M, Manshouri M (2014) Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper. J Environ Chem Eng 2:1846–1851 [DOI: 10.1016/j.jece.2014.08.003]
  13. Guo R, Nengzi LC, Chen Y, Song Q, Gou J, Cheng X (2020a) Construction of high-efficient visible photoelectrocatalytic system for carbamazepine degradation: kinetics, degradation pathway and mechanism. Chin Chem Lett 31:2661–2667. https://doi.org/10.1016/j.cclet.2020.03.068 [DOI: 10.1016/j.cclet.2020.03.068]
  14. Guo R, Wang Y, Li J, Cheng X, Dionysiou DD (2020b) Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nanohybrid manganese dioxide incorporating ferric oxide. Appl Catal B Environ 278:119297. https://doi.org/10.1016/j.apcatb.2020.119297 [DOI: 10.1016/j.apcatb.2020.119297]
  15. Ji Y, Shi Y, Dong W, Wen X, Jiang M, Lu J (2016) Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem Eng J 298:225–233. https://doi.org/10.1016/j.cej.2016.04.028 [DOI: 10.1016/j.cej.2016.04.028]
  16. Karimifard S, Moghaddam MRA (2018) Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ 640:772–797 [DOI: 10.1016/j.scitotenv.2018.05.355]
  17. Khataee AR, Fathinia M, Aber S, Zarei M (2010) Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification. J Hazard Mater 181:886–897. https://doi.org/10.1016/j.jhazmat.2010.05.096 [DOI: 10.1016/j.jhazmat.2010.05.096]
  18. Kiaee N, Aghaie-Khafri M (2014) Optimization of gas tungsten arc welding process by response surface methodology. Mater Des 54:25–31 [DOI: 10.1016/j.matdes.2013.08.032]
  19. Kuehl ROO (2000) Designs of experiments: statistical principles of research design and analysis. Duxbury Press
  20. Kumar Subramani A, Rani P, Wang PH, Chen BY, Mohan S, Chang CT (2019) Performance assessment of the combined treatment for oxytetracycline antibiotics removal by sonocatalysis and degradation using Pseudomonas aeruginosa. J Environ Chem Eng 7:103215. https://doi.org/10.1016/j.jece.2019.103215 [DOI: 10.1016/j.jece.2019.103215]
  21. Lai W, Xie G, Dai R, Kuang C, Xu Y, Pan Z, Zheng L, Yu L, Ye S, Chen Z, Li H (2020) Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode. J Environ Manag 257:109968. https://doi.org/10.1016/j.jenvman.2019.109968 [DOI: 10.1016/j.jenvman.2019.109968]
  22. Lee Y, Lo S, Kuo J, Hsieh C (2012) Decomposition of perfluorooctanoic acid by microwaveactivated persulfate: effects of temperature, pH, and chloride ions. Front Environ Sci Eng 6:17–25 [DOI: 10.1007/s11783-011-0371-x]
  23. Li Z, Sun Y, Yang Y, Han Y, Wang T, Chen J, Tsang DCW (2020) Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: mechanisms and pathway. Environ Res 183:109156. https://doi.org/10.1016/j.envres.2020.109156 [DOI: 10.1016/j.envres.2020.109156]
  24. Liang C, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. I Activated by ferrous ion with and without a persulfate--thiosulfate redox couple. Chemosphere 55:1213–1223 [DOI: 10.1016/j.chemosphere.2004.01.029]
  25. Liu D, Li M, Li X, Ren F, Sun P, Zhou L (2020) Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chem Eng J 387:124008. https://doi.org/10.1016/j.cej.2019.124008 [DOI: 10.1016/j.cej.2019.124008]
  26. Liu J, Zhong S, Song Y, Wang B, Zhang F (2018a) Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J Electroanal Chem 809:74–79 [DOI: 10.1016/j.jelechem.2017.12.033]
  27. Liu Y, He X, Duan X, Fu Y, Fatta-Kassinos D, Dionysiou DD (2016a) Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: kinetics and mechanism. Water Res 95:195–204. https://doi.org/10.1016/j.watres.2016.03.011 [DOI: 10.1016/j.watres.2016.03.011]
  28. Liu Y, He X, Fu Y, Dionysiou DD (2016b) Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate. J Hazard Mater 305:229–239. https://doi.org/10.1016/j.jhazmat.2015.11.043 [DOI: 10.1016/j.jhazmat.2015.11.043]
  29. Liu Y, Wang Y, Wang Q, Pan J, Zhang J (2018b) Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). Chemosphere 190:431–441 [DOI: 10.1016/j.chemosphere.2017.10.020]
  30. Majumdar A, Pal A (2020) Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics. J Environ Chem Eng 8:103645. https://doi.org/10.1016/j.jece.2019.103645 [DOI: 10.1016/j.jece.2019.103645]
  31. Malakootian M, Ahmadian M (2019) Ciprofloxacin removal by electro-activated persulfate in aqueous solution using iron electrodes. Appl Water Sci 9:1–10 [DOI: 10.1007/s13201-019-1024-7]
  32. Malakotian M, Asadzadeh SN, Khatami M, Ahmadian M, Heidari MR, Karimi P, Firouzeh N, Varma RS (2019) Protocol encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the removal of tetracycline antibiotics from aqueous environments. Clean Techn Environ Policy 21:1665–1674. https://doi.org/10.1007/s10098-019-01733-w [DOI: 10.1007/s10098-019-01733-w]
  33. Maran JP, Manikandan S, Thirugnanasambandham K, Nivetha CV, Dinesh R (2013) Box--Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr Polym 92:604–611 [DOI: 10.1016/j.carbpol.2012.09.020]
  34. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055 [DOI: 10.1016/j.chemosphere.2016.02.055]
  35. Milh H, Cabooter D, Dewil R (2021) Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation: radical identification and elucidation of the degradation mechanism. Chem Eng J 130457
  36. Myers RH (1999) Response surface methodology—current status and future directions. J Qual Technol 31:30–44 [DOI: 10.1080/00224065.1999.11979891]
  37. Nam SN, Cho H, Han J, Her N, Yoon J (2018) Photocatalytic degradation of acesulfame K: optimization using the Box–Behnken design (BBD). Process Saf Environ Prot 113:10–21. https://doi.org/10.1016/j.psep.2017.09.002 [DOI: 10.1016/j.psep.2017.09.002]
  38. Pan Y, Zhang Y, Zhou M, Cai J, Tian Y (2019) Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0. Chem Eng J 361:908–918. https://doi.org/10.1016/j.cej.2018.12.135 [DOI: 10.1016/j.cej.2018.12.135]
  39. Rastogi A, Al-Abed SR, Dionysiou DD (2009) Sulfate radical-based ferrous--peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B Environ 85:171–179 [DOI: 10.1016/j.apcatb.2008.07.010]
  40. Santos SCR, Boaventura RAR (2008) Adsorption modelling of textile dyes by sepiolite. Appl Clay Sci 42:137–145 [DOI: 10.1016/j.clay.2008.01.002]
  41. Sathiya P, Ajith PM, Soundararajan R (2013) Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel. J Mech Sci Technol 27:2457–2465 [DOI: 10.1007/s12206-013-0631-8]
  42. Silveira JE, Zazo JA, Pliego G, Bidóia ED, Moraes PB (2015) Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology. Environ Sci Pollut Res 22:5831–5841 [DOI: 10.1007/s11356-014-3738-2]
  43. Ulucan-Altuntas K, Debik E (2020) Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: comparison with nZVI, degradation mechanism, and pathways. Front Environ Sci Eng 14. https://doi.org/10.1007/s11783-019-1196-2
  44. Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D (2012) Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ 430:109–118. https://doi.org/10.1016/j.scitotenv.2012.04.055 [DOI: 10.1016/j.scitotenv.2012.04.055]
  45. Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517. https://doi.org/10.1016/j.cej.2017.11.059 [DOI: 10.1016/j.cej.2017.11.059]
  46. Wang Z, Qiu W, Pang S, Gao Y, Zhou Y, Cao Y, Jiang J (2020) Relative contribution of ferryl ion species (Fe (IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes. Water Res 172:115504 [DOI: 10.1016/j.watres.2020.115504]
  47. Whitcomb PJ, Anderson MJ (2004) RSM simplified: optimizing processes using response surface methods for design of experiments. CRC Press [DOI: 10.4324/9781482293777]
  48. Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box--Behnken experimental design. J Hazard Mater 171:551–562 [DOI: 10.1016/j.jhazmat.2009.06.035]
  49. Zhang H, Nengzi LC, Li X, Wang Z, Li B, Liu L et al (2020) Construction of CuBi2O4/MnO2 composite as Z-scheme photoactivator of peroxymonosulfate for degradation of antibiotics. Chem Eng J 386:124011. https://doi.org/10.1016/j.cej.2020.124011 [DOI: 10.1016/j.cej.2020.124011]
  50. Zhou T, Zou X, Mao J, Wu X (2016) Decomposition of sulfadiazine in a sonochemical Fe0-catalyzed persulfate system: parameters optimizing and interferences of wastewater matrix. Appl Catal B Environ 185:31–41 [DOI: 10.1016/j.apcatb.2015.12.004]

Grants

  1. 898422/h2020 marie skłodowska-curie actions

MeSH Term

Ecosystem
Hot Temperature
Oxytetracycline
Peroxides
Sulfates
Water Pollutants, Chemical

Chemicals

Peroxides
Sulfates
Water Pollutants, Chemical
peroxymonosulfate
Oxytetracycline

Word Cloud

Created with Highcharts 10.0.0PDSPMSprocessOTCprocessesheat-activatedpHremovalRSMconcentrationtemperaturereactiontimeoptimum904peroxydisulfateperoxymonosulfateparametersmMminconditionsefficienciesrespectively6aqueoussolutionradicalsactivationOxytetracyclinebroad-spectrumantibioticresistsbiodegradationposesriskecosystemstudyinvestigateddegradationResponsesurfacemethodologyusedevaluateeffectnamelyinitialoxidantefficiencyAccordingresultsmodelsfourindependentvariablessignificant83729°C265750°C20predicted897%840%resultvalidationexperimentsconductedobtained87±280higherkineticconstantsvalueseffectiveefficientoptimizationDegradationoxytetracyclineoxidationAntibioticHydroxylPeroxymonosulfatePersulfateSulfate

Similar Articles

Cited By