Generation of multicellular spatiotemporal models of population dynamics from ordinary differential equations, with applications in viral infection.

T J Sego, Josua O Aponte-Serrano, Juliano F Gianlupi, James A Glazier
Author Information
  1. T J Sego: Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, IN, USA. tjsego@iu.edu. ORCID
  2. Josua O Aponte-Serrano: Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, IN, USA.
  3. Juliano F Gianlupi: Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, IN, USA.
  4. James A Glazier: Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, IN, USA.

Abstract

BACKGROUND: The biophysics of an organism span multiple scales from subcellular to organismal and include processes characterized by spatial properties, such as the diffusion of molecules, cell migration, and flow of intravenous fluids. Mathematical biology seeks to explain biophysical processes in mathematical terms at, and across, all relevant spatial and temporal scales, through the generation of representative models. While non-spatial, ordinary differential equation (ODE) models are often used and readily calibrated to experimental data, they do not explicitly represent the spatial and stochastic features of a biological system, limiting their insights and applications. However, spatial models describing biological systems with spatial information are mathematically complex and computationally expensive, which limits the ability to calibrate and deploy them and highlights the need for simpler methods able to model the spatial features of biological systems.
RESULTS: In this work, we develop a formal method for deriving cell-based, spatial, multicellular models from ODE models of population dynamics in biological systems, and vice versa. We provide examples of generating spatiotemporal, multicellular models from ODE models of viral infection and immune response. In these models, the determinants of agreement of spatial and non-spatial models are the degree of spatial heterogeneity in viral production and rates of extracellular viral diffusion and decay. We show how ODE model parameters can implicitly represent spatial parameters, and cell-based spatial models can generate uncertain predictions through sensitivity to stochastic cellular events, which is not a feature of ODE models. Using our method, we can test ODE models in a multicellular, spatial context and translate information to and from non-spatial and spatial models, which help to employ spatiotemporal multicellular models using calibrated ODE model parameters. We additionally investigate objects and processes implicitly represented by ODE model terms and parameters and improve the reproducibility of spatial, stochastic models.
CONCLUSION: We developed and demonstrate a method for generating spatiotemporal, multicellular models from non-spatial population dynamics models of multicellular systems. We envision employing our method to generate new ODE model terms from spatiotemporal and multicellular models, recast popular ODE models on a cellular basis, and generate better models for critical applications where spatial and stochastic features affect outcomes.

Keywords

References

  1. J Virol. 2000 Oct;74(19):9222-33 [PMID: 10982369]
  2. J Theor Biol. 2015 Feb 7;366:91-102 [PMID: 25476731]
  3. Methods Cell Biol. 2012;110:325-66 [PMID: 22482955]
  4. J Virol. 2003 Jan;77(2):1021-38 [PMID: 12502818]
  5. PLoS Comput Biol. 2020 Dec 21;16(12):e1008451 [PMID: 33347439]
  6. J Theor Biol. 2006 Sep 21;242(2):464-77 [PMID: 16650441]
  7. Prog Biophys Mol Biol. 2011 Oct;107(1):21-31 [PMID: 21704063]
  8. Bioinformatics. 2020 Nov 1;36(17):4649-4654 [PMID: 32573648]
  9. PLoS Comput Biol. 2008 Sep 19;4(9):e1000163 [PMID: 18802455]
  10. Bioinformatics. 2014 May 1;30(9):1331-2 [PMID: 24443380]
  11. Virology. 2012 Mar 1;424(1):11-7 [PMID: 22222212]
  12. Nat Rev Immunol. 2016 Mar;16(3):193-201 [PMID: 26852928]
  13. J Open Source Softw. 2020 Mar 13;5(47):1848 [PMID: 37192932]
  14. J Clin Invest. 2007 Aug;117(8):2044-50 [PMID: 17671638]
  15. PLoS Comput Biol. 2011 Feb 03;7(2):e1001058 [PMID: 21304934]
  16. R Soc Open Sci. 2020 Aug 12;7(8):192148 [PMID: 32968501]
  17. Viruses. 2018 Nov 13;10(11): [PMID: 30428545]
  18. PLoS One. 2016 Sep 16;11(9):e0162428 [PMID: 27636091]
  19. Nat Rev Mol Cell Biol. 2009 Jul;10(7):445-57 [PMID: 19546857]
  20. Adv Phys. 2013 Jan;62(1):1-112 [PMID: 24748680]
  21. Biophys J. 2019 Jul 23;117(2):355-368 [PMID: 31311624]
  22. Rep Prog Phys. 2013 Apr;76(4):046602 [PMID: 23481518]
  23. J Theor Biol. 2015 Jun 7;374:83-93 [PMID: 25843213]
  24. J R Soc Interface. 2018 Feb;15(139): [PMID: 29491179]
  25. Mol Biol Cell. 2016 Nov 7;27(22):3673-3685 [PMID: 27193300]
  26. PLoS One. 2014 Apr 21;9(4):e95150 [PMID: 24752131]
  27. Biophys J. 2001 Oct;81(4):1930-7 [PMID: 11566767]
  28. PLoS Comput Biol. 2017 Feb 13;13(2):e1005387 [PMID: 28192427]
  29. Int J Pharm. 2017 Oct 30;532(1):555-572 [PMID: 28917986]
  30. Proc Biol Sci. 2021 Feb 24;288(1945):20203002 [PMID: 33622135]
  31. Phys Rev Lett. 1992 Sep 28;69(13):2013-2016 [PMID: 10046374]
  32. Trends Biochem Sci. 2001 Oct;26(10):597-604 [PMID: 11590012]
  33. Biofabrication. 2017 Jun 15;9(2):024104 [PMID: 28617667]
  34. Wiley Interdiscip Rev Syst Biol Med. 2009 Jul-Aug;1(1):4-14 [PMID: 20448808]
  35. Immunol Rev. 2018 Sep;285(1):81-96 [PMID: 30129207]
  36. PLoS Pathog. 2020 Jul 2;16(7):e1008671 [PMID: 32614923]
  37. Nucleic Acids Res. 2018 Jan 4;46(D1):D1248-D1253 [PMID: 29106614]

Grants

  1. R01 GM122424/NIGMS NIH HHS
  2. U24 EB028887/NIBIB NIH HHS

MeSH Term

Computer Simulation
Humans
Models, Biological
Population Dynamics
Reproducibility of Results
Virus Diseases

Word Cloud

Created with Highcharts 10.0.0modelsspatialODEmulticellularsystemsmodelspatiotemporalnon-spatialstochasticbiologicalmethodviralparametersprocessestermsfeaturesapplicationspopulationdynamicscangeneratescalesdiffusionordinarydifferentialcalibratedrepresentinformationcell-basedgeneratinginfectionimplicitlycellularmodelingBACKGROUND:biophysicsorganismspanmultiplesubcellularorganismalincludecharacterizedpropertiesmoleculescellmigrationflowintravenousfluidsMathematicalbiologyseeksexplainbiophysicalmathematicalacrossrelevanttemporalgenerationrepresentativeequationoftenusedreadilyexperimentaldataexplicitlysystemlimitinginsightsHoweverdescribingmathematicallycomplexcomputationallyexpensivelimitsabilitycalibratedeployhighlightsneedsimplermethodsableRESULTS:workdevelopformalderivingviceversaprovideexamplesimmuneresponsedeterminantsagreementdegreeheterogeneityproductionratesextracellulardecayshowuncertainpredictionssensitivityeventsfeatureUsingtestcontexttranslatehelpemployusingadditionallyinvestigateobjectsrepresentedimprovereproducibilityCONCLUSION:developeddemonstrateenvisionemployingnewrecastpopularbasisbettercriticalaffectoutcomesGenerationequationsAgent-basedMulticellularMultiscale

Similar Articles

Cited By