A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making.

Alexander C Keyel, Morgan E Gorris, Ilia Rochlin, Johnny A Uelmen, Luis F Chaves, Gabriel L Hamer, Imelda K Moise, Marta Shocket, A Marm Kilpatrick, Nicholas B DeFelice, Justin K Davis, Eliza Little, Patrick Irwin, Andrew J Tyre, Kelly Helm Smith, Chris L Fredregill, Oliver Elison Timm, Karen M Holcomb, Michael C Wimberly, Matthew J Ward, Christopher M Barker, Charlotte G Rhodes, Rebecca L Smith
Author Information
  1. Alexander C Keyel: Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America. ORCID
  2. Morgan E Gorris: Information Systems and Modeling & Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  3. Ilia Rochlin: Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America. ORCID
  4. Johnny A Uelmen: Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America. ORCID
  5. Luis F Chaves: Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Rios, Cartago, Costa Rica. ORCID
  6. Gabriel L Hamer: Department of Entomology, Texas A&M University, College Station, Texas, United States of America.
  7. Imelda K Moise: Department of Geography & Regional Studies, University of Miami, Coral Gables, Florida, United States of America.
  8. Marta Shocket: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America. ORCID
  9. A Marm Kilpatrick: Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America. ORCID
  10. Nicholas B DeFelice: Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America. ORCID
  11. Justin K Davis: Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, United States of America.
  12. Eliza Little: Connecticut Agricultural Experimental Station, New Haven, Connecticut, United States of America.
  13. Patrick Irwin: Northwest Mosquito Abatement District, Wheeling, Illinois, United States of America. ORCID
  14. Andrew J Tyre: School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.
  15. Kelly Helm Smith: National Drought Mitigation Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America. ORCID
  16. Chris L Fredregill: Mosquito and Vector Control Division, Harris County Public Health, Houston, Texas, United States of America. ORCID
  17. Oliver Elison Timm: Department of Atmospheric and Environmental Sciences, University at Albany, Albany, New York, United States of America. ORCID
  18. Karen M Holcomb: Department of Pathology, Microbiology, and Immunology, University of California Davis, California, United States of America. ORCID
  19. Michael C Wimberly: Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, United States of America. ORCID
  20. Matthew J Ward: Environmental Analytics Group, Universities Space Research Association, NASA Ames Research Center, Moffett Field, California, United States of America. ORCID
  21. Christopher M Barker: Department of Pathology, Microbiology, and Immunology, University of California Davis, California, United States of America. ORCID
  22. Charlotte G Rhodes: Department of Entomology, Texas A&M University, College Station, Texas, United States of America.
  23. Rebecca L Smith: Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America. ORCID

Abstract

West Nile virus (WNV) is a globally distributed mosquito-borne virus of great public health concern. The number of WNV human cases and mosquito infection patterns vary in space and time. Many statistical models have been developed to understand and predict WNV geographic and temporal dynamics. However, these modeling efforts have been disjointed with little model comparison and inconsistent validation. In this paper, we describe a framework to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or warning models for this review were solicited from active research groups working in different regions of the United States. A total of 13 models were selected and described. The spatial and temporal scales of each model were compared to guide the timing and the locations for mosquito and virus surveillance, to support mosquito vector control decisions, and to assist in conducting public health outreach campaigns at multiple scales of decision-making. Our overarching goal is to bridge the existing gap between model development, which is usually conducted as an academic exercise, and practical model applications, which occur at state, tribal, local, or territorial public health and mosquito control agency levels. The proposed model assessment and comparison framework helps clarify the value of individual models for decision-making and identifies the appropriate temporal and spatial scope of each model. This qualitative evaluation clearly identifies gaps in linking models to applied decisions and sets the stage for a quantitative comparison of models. Specifically, whereas many coarse-grained models (county resolution or greater) have been developed, the greatest need is for fine-grained, short-term planning models (m-km, days-weeks) that remain scarce. We further recommend quantifying the value of information for each decision to identify decisions that would benefit most from model input.

References

  1. Am J Hyg. 1962 May;75:377-91 [PMID: 13878878]
  2. Stat Med. 1992 Sep 15;11(12):1591-7 [PMID: 1359621]
  3. J Med Entomol. 2019 Oct 28;56(6):1491-1497 [PMID: 31549723]
  4. J Med Entomol. 2019 Oct 28;56(6):1508-1515 [PMID: 31549727]
  5. PLoS One. 2021 May 19;16(5):e0251517 [PMID: 34010306]
  6. J Am Mosq Control Assoc. 2011 Mar;27(1):45-55 [PMID: 21476447]
  7. J Am Mosq Control Assoc. 2019 Mar;35(1):75-83 [PMID: 31442186]
  8. Geohealth. 2020 Aug 27;4(9):e2020GH000244 [PMID: 32885112]
  9. Viruses. 2019 Nov 01;11(11): [PMID: 31683823]
  10. Am J Trop Med Hyg. 2003 May;68(5):508-18 [PMID: 12812335]
  11. Proc Biol Sci. 2017 Feb 8;284(1848): [PMID: 28179512]
  12. Acta Trop. 2018 Sep;185:242-250 [PMID: 29727611]
  13. Emerg Infect Dis. 2012 Aug;18(8):1298-306 [PMID: 22840314]
  14. PLoS Curr. 2017 May 23;9: [PMID: 28736681]
  15. Am J Trop Med Hyg. 2021 Jan;104(1):151-165 [PMID: 33146116]
  16. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14290-4 [PMID: 26578774]
  17. Geohealth. 2019 Sep 17;3(9):245-265 [PMID: 32159045]
  18. Am J Trop Med Hyg. 2016 Apr;94(4):775-9 [PMID: 26903603]
  19. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24268-24274 [PMID: 31712420]
  20. Int J Environ Res Public Health. 2013 Apr 12;10(4):1505-26 [PMID: 23583963]
  21. Nature. 2007 Jun 7;447(7145):710-3 [PMID: 17507930]
  22. Parasit Vectors. 2016 Aug 09;9(1):443 [PMID: 27507279]
  23. Publ Public Health Univ Calif. 1962 Jun 6;4:1-257 [PMID: 14491029]
  24. Health Place. 2010 Nov;16(6):1188-95 [PMID: 20709590]
  25. J Am Mosq Control Assoc. 2007 Dec;23(4):405-19 [PMID: 18240517]
  26. Int J Health Geogr. 2004 Apr 20;3(1):8 [PMID: 15099399]
  27. J Med Entomol. 2020 Sep 7;57(5):1588-1595 [PMID: 32474595]
  28. PLoS Negl Trop Dis. 2012;6(10):e1848 [PMID: 23110242]
  29. Sci Total Environ. 2019 Jul 20;675:260-272 [PMID: 31030133]
  30. Nat Commun. 2017 Feb 24;8:14592 [PMID: 28233783]
  31. Geohealth. 2018 Dec 27;2(12):395-409 [PMID: 32159009]
  32. PLoS One. 2019 Jun 3;14(6):e0217854 [PMID: 31158250]
  33. PLoS Negl Trop Dis. 2017 Sep 14;11(9):e0005851 [PMID: 28910292]
  34. Parasit Vectors. 2010 Mar 19;3(1):19 [PMID: 20302617]
  35. Am J Epidemiol. 1980 Jul;112(1):124-8 [PMID: 7395846]
  36. PLoS Comput Biol. 2018 Mar 9;14(3):e1006047 [PMID: 29522514]
  37. Glob Chang Biol. 2021 Nov;27(21):5430-5445 [PMID: 34392584]
  38. JAMA Netw Open. 2019 Apr 5;2(4):e193175 [PMID: 31026036]
  39. J Am Mosq Control Assoc. 2018 Jun;34(2):107-116 [PMID: 31442163]
  40. J Med Entomol. 2014 Jan;51(1):55-62 [PMID: 24605453]
  41. Infect Genet Evol. 2011 Oct;11(7):1577-85 [PMID: 21875691]
  42. Vector Borne Zoonotic Dis. 2012 Oct;12(10):886-92 [PMID: 22651384]
  43. PLoS One. 2020 May 21;15(5):e0227160 [PMID: 32437363]
  44. PLoS Negl Trop Dis. 2007 Oct 22;1(1):e33 [PMID: 17989780]
  45. Trop Anim Health Prod. 2008 Jan;40(1):69-76 [PMID: 18551781]
  46. Vector Borne Zoonotic Dis. 2006 Summer;6(2):117-27 [PMID: 16796509]
  47. J R Soc Interface. 2013 Feb 13;10(81):20120921 [PMID: 23407571]
  48. J Agric Biol Environ Stat. 2017 Dec;22(4):602-614 [PMID: 30636859]
  49. PLoS One. 2011;6(8):e23280 [PMID: 21853103]
  50. Emerg Infect Dis. 2006 Mar;12(3):395-402 [PMID: 16704775]
  51. Lancet Neurol. 2007 Feb;6(2):171-81 [PMID: 17239804]
  52. Lancet. 2001 Jul 28;358(9278):261-4 [PMID: 11498211]
  53. Parasit Vectors. 2018 Apr 17;11(1):249 [PMID: 29665862]
  54. J Anim Ecol. 2008 Jul;77(4):802-13 [PMID: 18397250]
  55. Elife. 2020 Sep 15;9: [PMID: 32930091]

Grants

  1. U01CK000516/ACL HHS
  2. U01CK000512/ACL HHS
  3. U01 CK000512/NCEZID CDC HHS
  4. U01CK000510/ACL HHS
  5. U01 CK000505/NCEZID CDC HHS
  6. U01 CK000510/NCEZID CDC HHS
  7. U01 CK000516/NCEZID CDC HHS
  8. U01 CK000509/NCEZID CDC HHS

MeSH Term

Decision Making
Humans
Models, Biological
Public Health Administration
West Nile Fever

Word Cloud

Created with Highcharts 10.0.0modelsmodelWNVviruspublichealthmosquitotemporalcomparisonframeworkdecisionsdecision-makingWestNiledevelopedmodelingeffortsspatialscalescontroldevelopmentlocalproposedvalueidentifiesqualitativeevaluationgloballydistributedmosquito-bornegreatconcernnumberhumancasesinfectionpatternsvaryspacetimeManystatisticalunderstandpredictgeographicdynamicsHoweverdisjointedlittleinconsistentvalidationpaperdescribeunifystandardizenationwideriskdetectionwarningreviewsolicitedactiveresearchgroupsworkingdifferentregionsUnitedStatestotal13selecteddescribedcomparedguidetiminglocationssurveillancesupportvectorassistconductingoutreachcampaignsmultipleoverarchinggoalbridgeexistinggapusuallyconductedacademicexercisepracticalapplicationsoccurstatetribalterritorialagencylevelsassessmenthelpsclarifyindividualappropriatescopeclearlygapslinkingappliedsetsstagequantitativeSpecificallywhereasmanycoarse-grainedcountyresolutiongreatergreatestneedfine-grainedshort-termplanningm-kmdays-weeksremainscarcerecommendquantifyinginformationdecisionidentifybenefitinputapplication

Similar Articles

Cited By (15)