Structuring of plant communities across agricultural landscape mosaics: the importance of connectivity and the scale of effect.

Michael McLeish, Adrián Peláez, Israel Pagán, Rosario Gavilán, Aurora Fraile, Fernando García-Arenal
Author Information
  1. Michael McLeish: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, 28223, Madrid, Spain. michael.mcleish@upm.es. ORCID
  2. Adrián Peláez: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.
  3. Israel Pagán: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.
  4. Rosario Gavilán: Unidad de Botánica, Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
  5. Aurora Fraile: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.
  6. Fernando García-Arenal: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.

Abstract

BACKGROUND: Plant communities of fragmented agricultural landscapes, are subject to patch isolation and scale-dependent effects. Variation in configuration, composition, and distance from one another affect biological processes of disturbance, productivity, and the movement ecology of species. However, connectivity and spatial structuring among these diverse communities are rarely considered together in the investigation of biological processes. Spatially optimised predictor variables that are based on informed measures of connectivity among communities, offer a solution to untangling multiple processes that drive biodiversity.
RESULTS: To address the gap between theory and practice, a novel spatial optimisation method that incorporates hypotheses of community connectivity, was used to estimate the scale of effect of biotic and abiotic factors that distinguish plant communities. We tested: (1) whether different hypotheses of connectivity among sites was important to measuring diversity and environmental variation among plant communities; and (2) whether spatially optimised variables of species relative abundance and the abiotic environment among communities were consistent with diversity parameters in distinguishing four habitat types; namely Crop, Edge, Oak, and Wasteland. The global estimates of spatial autocorrelation, which did not consider environmental variation among sites, indicated significant positive autocorrelation under four hypotheses of landscape connectivity. The spatially optimised approach indicated significant positive and negative autocorrelation of species relative abundance at fine and broad scales, which depended on the measure of connectivity and environmental variation among sites.
CONCLUSIONS: These findings showed that variation in community diversity parameters does not necessarily correspond to underlying spatial structuring of species relative abundance. The technique used to generate spatially-optimised predictors is extendible to incorporate multiple variables of interest along with a priori hypotheses of landscape connectivity. Spatially-optimised variables with appropriate definitions of connectivity might be better than diversity parameters in explaining functional differences among communities.

Keywords

References

  1. Ecology. 2019 Feb;100(2):e02576 [PMID: 30516271]
  2. Proc Biol Sci. 2014 Jul 22;281(1787): [PMID: 24870042]
  3. New Phytol. 2016 Jan;209(2):812-22 [PMID: 26365599]
  4. Phytopathology. 2004 Sep;94(9):992-8 [PMID: 18943076]
  5. Biometrika. 1950 Jun;37(1-2):17-23 [PMID: 15420245]
  6. Ecol Lett. 2011 Feb;14(2):101-12 [PMID: 21087380]
  7. Evolution. 2014 Jan;68(1):176-89 [PMID: 24372603]
  8. Proc Biol Sci. 2017 Dec 20;284(1869): [PMID: 29263286]
  9. Virus Res. 2017 Sep 15;241:68-76 [PMID: 28554561]
  10. Trends Ecol Evol. 1996 Sep;11(9):362-6 [PMID: 21237880]
  11. Trends Ecol Evol. 2016 May;31(5):382-394 [PMID: 26924737]
  12. Annu Rev Virol. 2019 Sep 29;6(1):387-409 [PMID: 31283443]
  13. Curr Opin Virol. 2015 Feb;10:56-62 [PMID: 25638504]
  14. PLoS One. 2006 Dec 20;1:e41 [PMID: 17183670]
  15. Mol Biol Evol. 2012 May;29(5):1481-92 [PMID: 22319146]
  16. Ecology. 2009 Jan;90(1):46-56 [PMID: 19294912]
  17. Phytopathology. 2019 Feb;109(2):277-285 [PMID: 30451633]
  18. Ecol Lett. 2010 Jul;13(7):810-8 [PMID: 20482583]
  19. Am Nat. 2001 Jul;158(1):87-99 [PMID: 18707317]
  20. Sci Rep. 2019 Nov 28;9(1):17826 [PMID: 31780703]
  21. Ecol Lett. 2010 Feb;13(2):246-64 [PMID: 20102373]
  22. Epidemics. 2015 Mar;10:6-10 [PMID: 25843374]
  23. Malar J. 2013 Aug 02;12:269 [PMID: 23914776]
  24. Oecologia. 2017 Jan;183(1):121-137 [PMID: 27714463]
  25. Annu Rev Phytopathol. 2015;53:471-84 [PMID: 26047560]
  26. Science. 2014 Jun 13;344(6189):1289-93 [PMID: 24926021]

MeSH Term

Agriculture
Biodiversity
Ecosystem
Plants

Word Cloud

Created with Highcharts 10.0.0connectivitycommunitiesamongspeciesspatialvariableshypothesesdiversityvariationautocorrelationprocessesoptimisedeffectplantsitesenvironmentalrelativeabundanceparameterslandscapeagriculturalbiologicalecologystructuringmultiplecommunityusedscaleabioticwhetherspatiallyfourindicatedsignificantpositiveBACKGROUND:Plantfragmentedlandscapessubjectpatchisolationscale-dependenteffectsVariationconfigurationcompositiondistanceoneanotheraffectdisturbanceproductivitymovementHoweverdiverserarelyconsideredtogetherinvestigationSpatiallypredictorbasedinformedmeasuresoffersolutionuntanglingdrivebiodiversityRESULTS:addressgaptheorypracticenoveloptimisationmethodincorporatesestimatebioticfactorsdistinguishtested:1differentimportantmeasuring2environmentconsistentdistinguishinghabitattypesnamelyCropEdgeOakWastelandglobalestimatesconsiderapproachnegativefinebroadscalesdependedmeasureCONCLUSIONS:findingsshowednecessarilycorrespondunderlyingtechniquegenerate spatially-optimisedpredictorsextendibleincorporateinterestalongprioriSpatially-optimisedappropriatedefinitionsmightbetterexplainingfunctionaldifferencesStructuringacrossmosaics:importanceEnvironmentalheterogeneityMovementScaleSpatial

Similar Articles

Cited By