Reducing Poverty-Related Disparities in Cervical Cancer: The Role of HPV Vaccination.

Jennifer C Spencer, Noel T Brewer, Tamera Coyne-Beasley, Justin G Trogdon, Morris Weinberger, Stephanie B Wheeler
Author Information
  1. Jennifer C Spencer: Center for Health Decision Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. jennifer_spencer@austin.utexas.edu. ORCID
  2. Noel T Brewer: Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
  3. Tamera Coyne-Beasley: Departments of Pediatrics and Internal Medicine, Division of Adolescent Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
  4. Justin G Trogdon: Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. ORCID
  5. Morris Weinberger: Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
  6. Stephanie B Wheeler: Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Abstract

BACKGROUND: Near elimination of cervical cancer in the United States is possible in coming decades, yet inequities will delay this achievement for some populations. We sought to explore the effects of human papillomavirus (HPV) vaccination on disparities in cervical cancer incidence between high- and low-poverty U.S. counties.
METHODS: We calibrated a dynamic simulation model of HPV infection to reflect average counties in the highest and lowest quartile of poverty (percent of population below federal poverty level), incorporating data on HPV prevalence, cervical cancer screening, and HPV vaccination. We projected cervical cancer incidence through 2070, estimated absolute and relative disparities in incident cervical cancer for high- versus low-poverty counties, and compared incidence with the near-elimination target (4 cases/100,000 women annually).
RESULTS: We estimated that, on average, low-poverty counties will achieve near-elimination targets 14 years earlier than high-poverty counties (2029 vs. 2043). Absolute disparities by county poverty will decrease, but relative differences are estimated to increase. We estimate 21,604 cumulative excess cervical cancer cases in high-poverty counties over the next 50 years. Increasing HPV vaccine coverage nationally to the Healthy People 2020 goal (80%) would reduce excess cancer cases, but not alter estimated time to reach the near-elimination threshold.
CONCLUSIONS: High-poverty U.S. counties will likely be delayed in achieving near-elimination targets for cervical cancer and as a result will experience thousands of potentially preventable cancers.
IMPACT: Alongside vaccination efforts, it is important to address the role of social determinants and health care access in driving persistent inequities by area poverty.

References

  1. Cancer. 2013 Aug 15;119(16):3052-8 [PMID: 23661284]
  2. Cancer Epidemiol Biomarkers Prev. 2021 Jun;30(6):1114-1121 [PMID: 33771846]
  3. Cancer Epidemiol Biomarkers Prev. 2006 Nov;15(11):2154-9 [PMID: 17119040]
  4. Soc Sci Med. 2014 Jan;100:54-61 [PMID: 24444839]
  5. N Engl J Med. 2008 Aug 21;359(8):821-32 [PMID: 18716299]
  6. Vaccine. 2012 May 14;30(23):3383-8 [PMID: 22480925]
  7. Papillomavirus Res. 2018 Jun;5:87-88 [PMID: 29499389]
  8. J Adolesc Health. 2015 May;56(5 Suppl):S40-6 [PMID: 25863554]
  9. JAMA. 2000 Jan 5;283(1):87-93 [PMID: 10632285]
  10. Cancer Epidemiol Biomarkers Prev. 2021 Jan;30(1):13-21 [PMID: 33008874]
  11. J Med Screen. 2021 Jun;28(2):213-216 [PMID: 33730899]
  12. Vaccine. 2013 Feb 6;31(8):1238-45 [PMID: 23246257]
  13. Endocr Relat Cancer. 2017 Apr;24(4):R99-R108 [PMID: 28283546]
  14. J Womens Health (Larchmt). 2021 Sep;30(9):1243-1252 [PMID: 33851854]
  15. Sex Transm Dis. 2011 Oct;38(10):932-40 [PMID: 21934568]
  16. BMC Public Health. 2017 Jul 14;18(1):19 [PMID: 28709420]
  17. Lancet Public Health. 2016 Nov;1(1):e8-e17 [PMID: 29253379]
  18. MMWR Morb Mortal Wkly Rep. 2020 Aug 21;69(33):1109-1116 [PMID: 32817598]
  19. J Womens Health (Larchmt). 2019 Feb;28(2):244-249 [PMID: 30614380]
  20. Am J Prev Med. 2010 May;38(5):525-33 [PMID: 20409501]
  21. J Environ Public Health. 2017;2017:2819372 [PMID: 28408935]
  22. Cancer Causes Control. 2020 Sep;31(9):839-850 [PMID: 32602058]
  23. Vaccine. 2021 May 12;39(20):2731-2735 [PMID: 33875269]
  24. J Natl Cancer Inst. 2013 Feb 6;105(3):175-201 [PMID: 23297039]
  25. Br J Cancer. 2012 Apr 24;106(9):1571-8 [PMID: 22441643]
  26. Cancer. 2016 Jul 1;122(13):2057-66 [PMID: 27124396]
  27. Obstet Gynecol. 2007 Jul;110(1):87-95 [PMID: 17601901]
  28. Prev Med. 2017 Jul;100:243-247 [PMID: 28502575]
  29. Pediatrics. 2020 Dec;146(6): [PMID: 33199466]
  30. Ann Epidemiol. 2017 Nov;27(11):724-730.e1 [PMID: 29107447]
  31. J Womens Health (Larchmt). 2007 Apr;16(3):311-30 [PMID: 17439377]
  32. Cancer Epidemiol Biomarkers Prev. 2011 Apr;20(4):591-9 [PMID: 21266522]
  33. Best Pract Res Clin Obstet Gynaecol. 2018 Feb;47:95-106 [PMID: 28958633]
  34. Cancer. 2004 Sep 1;101(5):1051-7 [PMID: 15329915]
  35. Lancet Public Health. 2021 Jul;6(7):e522-e527 [PMID: 33939965]
  36. Sex Transm Dis. 2015 Feb;42(2):71-5 [PMID: 25585064]
  37. Prev Med. 2021 Mar;144:106400 [PMID: 33388330]
  38. J Natl Cancer Inst. 2012 Nov 21;104(22):1712-23 [PMID: 23104323]
  39. Cancer. 2008 Nov 15;113(10 Suppl):2910-8 [PMID: 18980274]
  40. Lancet Public Health. 2020 Apr;5(4):e213-e222 [PMID: 32057315]
  41. J Cancer Epidemiol. 2011;2011:107497 [PMID: 22496688]
  42. J Vaccines Vaccin. 2017 Jun;8(3): [PMID: 28845336]
  43. Int J Cancer. 2019 Mar 15;144(6):1460-1473 [PMID: 30353911]
  44. J Infect Dis. 2019 Jan 29;219(4):590-598 [PMID: 30239749]
  45. Prev Med. 2021 Mar;144:106438 [PMID: 33678235]
  46. J Low Genit Tract Dis. 2014 Apr;18(2):182-9 [PMID: 24477171]
  47. J Natl Med Assoc. 2003 Sep;95(9):825-32 [PMID: 14527050]
  48. Ann Intern Med. 2015 Oct 20;163(8):589-97 [PMID: 26414147]
  49. Infect Dis Clin North Am. 2013 Dec;27(4):765-78 [PMID: 24275269]
  50. J Womens Health (Larchmt). 2021 Jan;30(1):5-13 [PMID: 33464997]
  51. Cancer. 2014 Jul 15;120(14):2191-8 [PMID: 24866103]
  52. Prev Med. 2019 Jun;123:197-203 [PMID: 30930259]
  53. Int J Gynaecol Obstet. 2017 Jul;138 Suppl 1:4-6 [PMID: 28691327]

Grants

  1. T32 CA092203/NCI NIH HHS
  2. T32 CA116339/NCI NIH HHS

MeSH Term

Adult
Disease Eradication
Female
Health Status Disparities
Humans
Middle Aged
Models, Statistical
Papillomavirus Vaccines
Poverty Areas
Social Determinants of Health
United States
Uterine Cervical Neoplasms
Vaccination

Chemicals

Papillomavirus Vaccines

Word Cloud

Created with Highcharts 10.0.0cancercervicalcountiesHPVwillpovertyestimatednear-eliminationvaccinationdisparitiesincidencelow-povertyinequitieshigh-USaveragerelativetargetsyearshigh-povertyexcesscasesBACKGROUND:NeareliminationUnitedStatespossiblecomingdecadesyetdelayachievementpopulationssoughtexploreeffectshumanpapillomavirusMETHODS:calibrateddynamicsimulationmodelinfectionreflecthighestlowestquartilepercentpopulationfederallevelincorporatingdataprevalencescreeningprojected2070absoluteincidentversuscomparedtarget4cases/100000womenannuallyRESULTS:achieve14earlier2029vs2043Absolutecountydecreasedifferencesincreaseestimate21604cumulativenext50IncreasingvaccinecoveragenationallyHealthyPeople2020goal80%reducealtertimereachthresholdCONCLUSIONS:High-povertylikelydelayedachievingresultexperiencethousandspotentiallypreventablecancersIMPACT:AlongsideeffortsimportantaddressrolesocialdeterminantshealthcareaccessdrivingpersistentareaReducingPoverty-RelatedDisparitiesCervicalCancer:RoleVaccination

Similar Articles

Cited By