Expression Profiles and Potential Functions of Long Non-Coding RNAs in the Heart of Mice With Coxsackie B3 Virus-Induced Myocarditis.

Xiang Nie, Huihui Li, Jin Wang, Yuanyuan Cai, Jiahui Fan, Beibei Dai, Chen Chen, Dao Wen Wang
Author Information
  1. Xiang Nie: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  2. Huihui Li: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  3. Jin Wang: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  4. Yuanyuan Cai: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  5. Jiahui Fan: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  6. Beibei Dai: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  7. Chen Chen: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  8. Dao Wen Wang: Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Abstract

Aims: Long non-coding RNAs (lncRNAs) are critical regulators of viral infection and inflammatory responses. However, the roles of lncRNAs in acute myocarditis (AM), especially fulminant myocarditis (FM), remain unclear.
Methods: FM and non-fulminant myocarditis (NFM) were induced by coxsackie B3 virus (CVB3) in different mouse strains. Then, the expression profiles of the lncRNAs in the heart tissues were detected by sequencing. Finally, the patterns were analyzed by Pearson/Spearman rank correlation, Kyoto Encyclopedia of Genes and Genomes, and Cytoscape 3.7.
Results: First, 1,216, 983, 1,606, and 2,459 differentially expressed lncRNAs were identified in CVB3-treated A/J, C57BL/6, BALB/c, and C3H Mice with myocarditis, respectively. Among them, 88 lncRNAs were commonly dysregulated in all four models. Quantitative real-time polymerase chain reaction analyses further confirmed that four out of the top six commonly dysregulated lncRNAs were upregulated in all four models. Moreover, the levels of ENSMUST00000188819, ENSMUST00000199139, and ENSMUST00000222401 were significantly elevated in the heart and spleen and correlated with the severity of cardiac inflammatory infiltration. Meanwhile, 923 FM-specific dysregulated lncRNAs were detected, among which the levels of MSTRG.26098.49, MSTRG.31307.11, MSTRG.31357.2, and MSTRG.32881.28 were highly correlated with LVEF.
Conclusion: Expression of lncRNAs is significantly dysregulated in acute myocarditis, which may play different roles in the progression of AM.

Keywords

References

  1. Am J Respir Crit Care Med. 2004 Jul 15;170(2):126-32 [PMID: 15020293]
  2. Am J Cardiol. 2019 Dec 15;124(12):1954-1960 [PMID: 31679645]
  3. Front Biosci. 2003 Jan 01;8:e23-35 [PMID: 12456330]
  4. J Virol. 2001 Jul;75(13):5860-9 [PMID: 11390587]
  5. Cancer Manag Res. 2020 May 25;12:3903-3914 [PMID: 32547226]
  6. Nat Rev Immunol. 2015 Feb;15(2):117-29 [PMID: 25614321]
  7. Sci China Life Sci. 2019 Feb;62(2):187-202 [PMID: 30519877]
  8. Circ Res. 2021 May 28;128(11):1708-1723 [PMID: 33550812]
  9. EMBO Mol Med. 2018 Feb;10(2):200-218 [PMID: 29295868]
  10. J Mol Cell Cardiol. 2018 Dec;125:149-161 [PMID: 30393107]
  11. Eur Heart J. 2013 Sep;34(33):2636-48, 2648a-2648d [PMID: 23824828]
  12. Front Cell Infect Microbiol. 2020 Jul 02;10:312 [PMID: 32754448]
  13. Gene. 2016 Dec 5;594(1):144-150 [PMID: 27623506]
  14. Am J Physiol Heart Circ Physiol. 2018 Dec 1;315(6):H1553-H1568 [PMID: 30168729]
  15. mBio. 2010 Oct 26;1(5): [PMID: 20978541]
  16. N Engl J Med. 2009 Apr 9;360(15):1526-38 [PMID: 19357408]
  17. Curr Heart Fail Rep. 2014 Jun;11(2):166-77 [PMID: 24723087]
  18. J Cell Commun Signal. 2021 Jun;15(2):237-250 [PMID: 33058043]
  19. J Am Coll Cardiol. 2019 Jul 23;74(3):299-311 [PMID: 31319912]
  20. Cardiovasc Diagn Ther. 2020 Oct;10(5):1245-1255 [PMID: 33224748]
  21. J Am Coll Cardiol. 2009 Apr 28;53(17):1475-87 [PMID: 19389557]
  22. Mol Ther Nucleic Acids. 2018 Sep 7;12:254-266 [PMID: 30195764]
  23. Gene. 1994 May 16;142(2):309-10 [PMID: 8194770]
  24. Mol Cell Biol. 1984 Apr;4(4):736-42 [PMID: 6201722]
  25. ESC Heart Fail. 2020 Aug;7(4):1442-1451 [PMID: 32462801]
  26. Circulation. 2011 Mar 22;123(11):1174-84 [PMID: 21382894]
  27. J Heart Lung Transplant. 2010 Jul;29(7):739-46 [PMID: 20456978]
  28. Virus Res. 2018 Sep 15;257:25-32 [PMID: 30165080]
  29. Signal Transduct Target Ther. 2021 Feb 18;6(1):69 [PMID: 33597502]
  30. Curr Opin Rheumatol. 2012 Jul;24(4):401-7 [PMID: 22488075]
  31. Infect Immun. 1983 Feb;39(2):851-64 [PMID: 6299950]
  32. Circ Res. 2020 Aug 14;127(5):664-676 [PMID: 32434457]
  33. Mol Med Rep. 2018 Feb;17(2):2195-2202 [PMID: 29207070]
  34. Cancer Cell Int. 2019 Jul 30;19:202 [PMID: 31384177]
  35. Cell Rep Med. 2020 Jul 21;1(4):100052 [PMID: 32835305]
  36. Mol Ther Nucleic Acids. 2020 Sep 4;21:441-451 [PMID: 32668391]
  37. Nucleic Acids Res. 2019 Jan 8;47(D1):D853-D858 [PMID: 30407534]
  38. Nat Rev Cardiol. 2015 Nov;12(11):670-80 [PMID: 26194549]
  39. Theranostics. 2019 May 24;9(12):3425-3442 [PMID: 31281488]
  40. Autoimmunity. 2010 Jun;43(4):275-87 [PMID: 20187710]
  41. J Cell Mol Med. 2020 Nov;24(21):12341-12354 [PMID: 33047847]
  42. Nat Clin Pract Cardiovasc Med. 2008 Nov;5(11):693-706 [PMID: 18797433]
  43. Cell. 2013 Mar 14;152(6):1298-307 [PMID: 23498938]
  44. Am J Cardiol. 1993 Oct 15;72(12):952-7 [PMID: 8213554]
  45. Future Microbiol. 2015;10(4):629-53 [PMID: 25865198]
  46. BMC Genomics. 2017 Jan 25;18(Suppl 1):933 [PMID: 28198671]
  47. Mol Ther Methods Clin Dev. 2020 May 12;17:1079-1087 [PMID: 32478123]
  48. Lancet. 2012 Feb 25;379(9817):738-47 [PMID: 22185868]
  49. Cell. 2016 May 5;165(4):792-800 [PMID: 27153493]
  50. Front Pediatr. 2019 Jul 11;7:283 [PMID: 31355167]
  51. Dev Cell. 2019 Aug 5;50(3):264-282 [PMID: 31386861]
  52. Circ Res. 2016 Feb 5;118(3):496-514 [PMID: 26846643]

MeSH Term

Animals
Coxsackievirus Infections
Enterovirus B, Human
Mice
Mice, Inbred BALB C
Mice, Inbred C3H
Mice, Inbred C57BL
Myocarditis
Myocardium
RNA, Long Noncoding

Chemicals

RNA, Long Noncoding

Word Cloud

Created with Highcharts 10.0.0lncRNAsmyocarditisdysregulatedMSTRGacuteB3fourLongRNAsinflammatoryrolesAMfulminantFMcoxsackiedifferentheartdetected12commonlymodelslevelssignificantlycorrelatedExpressionAims:non-codingcriticalregulatorsviralinfectionresponsesHoweverespeciallyremainunclearMethods:non-fulminantNFMinducedvirus CVB3mousestrainsexpressionprofilestissuessequencingFinallypatternsanalyzedPearson/SpearmanrankcorrelationKyotoEncyclopediaGenesGenomesCytoscape37Results:First216983606459differentiallyexpressedidentifiedCVB3-treatedA/JC57BL/6BALB/cC3HmicerespectivelyAmong88Quantitativereal-timepolymerasechainreactionanalysesconfirmedtopsixupregulatedMoreoverENSMUST00000188819ENSMUST00000199139ENSMUST00000222401elevatedspleenseveritycardiacinfiltrationMeanwhile923FM-specificamong26098493130711313573288128highlyLVEFConclusion:mayplayprogressionProfilesPotentialFunctionsNon-CodingHeartMiceCoxsackieVirus-InducedMyocarditisvirusinflammation

Similar Articles

Cited By