Regional Expression of mRNA Paralogs in the Brain of Atlantic Salmon (, L.) and Response to Fasting.

Ingvill Tolås, Tharmini Kalananthan, Ana S Gomes, Floriana Lai, Sissel Norland, Koji Murashita, Ivar Rønnestad
Author Information
  1. Ingvill Tolås: Department of Biological Sciences, University of Bergen, Bergen, Norway.
  2. Tharmini Kalananthan: Department of Biological Sciences, University of Bergen, Bergen, Norway.
  3. Ana S Gomes: Department of Biological Sciences, University of Bergen, Bergen, Norway.
  4. Floriana Lai: Department of Biological Sciences, University of Bergen, Bergen, Norway.
  5. Sissel Norland: Department of Biological Sciences, University of Bergen, Bergen, Norway.
  6. Koji Murashita: Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tamaki, Japan.
  7. Ivar Rønnestad: Department of Biological Sciences, University of Bergen, Bergen, Norway.

Abstract

Neuropeptide Y (NPY) is known as a potent orexigenic signal in vertebrates, but its role in Atlantic salmon has not yet been fully established. In this study, we identified three paralogs, named , in the Atlantic salmon genome. analysis revealed that these genes are well conserved across the vertebrate's lineage and the mature peptide sequences shared at least 77% of identity with the human homolog. We analyzed mRNA expression of paralogs in eight brain regions of Atlantic salmon post-smolt, and the effect of 4 days of fasting on the expression level. Results show that was the most abundant paralog, and was predominantly expressed in the telencephalon, followed by the midbrain and olfactory bulb. mRNA was highly abundant in hypothalamus and midbrain, while was found to be highest expressed in the telencephalon, with low mRNA expression levels detected in all the other brain regions. 4 days of fasting resulted in a significant ( < 0.05) decrease of mRNA expression in the olfactory bulb, increased mRNA expression in the midbrain and decreased mRNA expression in the pituitary. In the hypothalamus, the vertebrate appetite center, expression of the paralogs was not significantly affected by feeding status. However, we observed a trend of increased mRNA expression ( = 0.099) following 4 days of fasting. Altogether, our findings provide a solid basis for further research on appetite and energy metabolism in Atlantic salmon.

Keywords

References

  1. Anat Rec. 2001 Mar 1;262(3):227-37 [PMID: 11241192]
  2. Peptides. 2011 Jul;32(7):1357-62 [PMID: 21616109]
  3. J Neuroendocrinol. 2018 Mar;30(3):e12583 [PMID: 29427522]
  4. J Neuroendocrinol. 2012 May;24(5):766-73 [PMID: 22250860]
  5. Mol Biol Evol. 2013 May;30(5):1229-35 [PMID: 23486614]
  6. Fish Physiol Biochem. 2015 Jun;41(3):773-87 [PMID: 25805459]
  7. Neuron. 2016 May 4;90(3):596-608 [PMID: 27146269]
  8. Gen Comp Endocrinol. 2005 Jul;142(3):336-46 [PMID: 15935160]
  9. Mol Cell Endocrinol. 2009 Feb 5;299(1):79-88 [PMID: 19041366]
  10. Eur J Pharmacol. 1999 Jul 21;377(2-3):147-53 [PMID: 10456424]
  11. Cell Rep. 2017 Dec 5;21(10):2724-2736 [PMID: 29212021]
  12. J Mol Endocrinol. 2018 May;60(4):R171-R199 [PMID: 29467140]
  13. Arch Histol Cytol. 1996 May;59(2):137-48 [PMID: 8790860]
  14. Gen Comp Endocrinol. 2008 Feb 1;155(3):705-16 [PMID: 17950734]
  15. Neuropharmacology. 2012 Jun;62(7):2413-23 [PMID: 22381583]
  16. Anat Histol Embryol. 2008 Jun;37(3):231-40 [PMID: 18205886]
  17. Gen Comp Endocrinol. 2002 Mar;126(1):30-8 [PMID: 11944964]
  18. Neuropeptides. 2016 Feb;55:99-109 [PMID: 26441327]
  19. Endocrinology. 1994 Mar;134(3):1095-103 [PMID: 8119148]
  20. Fish Physiol Biochem. 2014 Dec;40(6):1709-19 [PMID: 25015546]
  21. Front Neurosci. 2016 Nov 29;10:540 [PMID: 27965528]
  22. J Comp Neurol. 2000 Apr 3;419(2):223-32 [PMID: 10723000]
  23. Front Neuroendocrinol. 2011 Oct;32(4):398-415 [PMID: 21726573]
  24. J Neurosci. 2020 Feb 12;40(7):1549-1559 [PMID: 31911461]
  25. Science. 1981 Aug 14;213(4509):787-9 [PMID: 7256280]
  26. Zoolog Sci. 2011 Dec;28(12):882-90 [PMID: 22132785]
  27. Peptides. 2017 Feb;88:97-105 [PMID: 27988351]
  28. Gen Comp Endocrinol. 2005 May 15;142(1-2):3-19 [PMID: 15862543]
  29. PeerJ. 2017 Apr 27;5:e3273 [PMID: 28462060]
  30. Nature. 2016 Apr 18;533(7602):200-5 [PMID: 27088604]
  31. Neurosci Lett. 2011 Oct 3;503(2):87-92 [PMID: 21871949]
  32. Biochem Cell Biol. 2000;78(3):371-92 [PMID: 10949087]
  33. Anat Histol Embryol. 2003 Feb;32(1):29-35 [PMID: 12733270]
  34. Neuropeptides. 2016 Feb;55:79-89 [PMID: 26454711]
  35. J Neurochem. 2000 Sep;75(3):908-18 [PMID: 10936170]
  36. Cell Tissue Res. 1989;255(3):529-38 [PMID: 23885381]
  37. Philos Trans R Soc Lond B Biol Sci. 2006 Jul 29;361(1471):1159-85 [PMID: 16874931]
  38. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Apr;205(2):203-210 [PMID: 30852662]
  39. J Neurocytol. 1992 Feb;21(2):148-56 [PMID: 1560251]
  40. J Neurosci. 2004 Mar 17;24(11):2678-89 [PMID: 15028760]
  41. Front Endocrinol (Lausanne). 2017 Apr 18;8:73 [PMID: 28458653]
  42. Comp Biochem Physiol B Biochem Mol Biol. 2005 Sep;142(1):79-89 [PMID: 16005251]
  43. Neuropharmacology. 2012 Jul;63(1):46-56 [PMID: 22037149]
  44. J Chem Neuroanat. 2000 Sep;19(4):197-210 [PMID: 11036237]
  45. J Comp Neurol. 2011 Dec 15;519(18):3599-639 [PMID: 21800319]
  46. Curr Biol. 2017 Dec 18;27(24):3796-3811.e5 [PMID: 29225025]
  47. Brain Res. 1999 Nov 27;848(1-2):153-66 [PMID: 10612707]
  48. Tissue Cell. 2013 Dec;45(6):452-9 [PMID: 24138942]
  49. Stem Cells. 2008 Jun;26(6):1636-45 [PMID: 18388302]
  50. Horm Behav. 2009 Jun;56(1):58-65 [PMID: 19303880]
  51. Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):633-7 [PMID: 11399499]
  52. Gen Comp Endocrinol. 2011 May 1;171(3):359-66 [PMID: 21377470]
  53. Front Physiol. 2020 Feb 11;11:61 [PMID: 32116771]
  54. Curr Biol. 2015 Nov 2;25(21):2804-2814 [PMID: 26592341]
  55. J Comp Neurol. 1990 Sep 8;299(2):229-41 [PMID: 2229479]
  56. Am J Physiol Regul Integr Comp Physiol. 2018 Feb 1;314(2):R201-R215 [PMID: 29046316]
  57. Gen Comp Endocrinol. 1998 May;110(2):157-65 [PMID: 9570936]
  58. Gen Comp Endocrinol. 2015 Sep 1;220:78-87 [PMID: 24967949]
  59. Gen Comp Endocrinol. 2009 Jun;162(2):160-71 [PMID: 19332070]
  60. Prog Retin Eye Res. 2015 Jul;47:19-37 [PMID: 25797468]
  61. Comp Biochem Physiol A Mol Integr Physiol. 2009 May;153(1):8-12 [PMID: 19087889]
  62. Gen Comp Endocrinol. 2009 Apr;161(2):252-61 [PMID: 19523382]
  63. Physiol Behav. 2013 Aug 15;120:54-63 [PMID: 23831740]
  64. J Neurochem. 2021 Aug 6;: [PMID: 34359098]
  65. Am J Physiol Regul Integr Comp Physiol. 2000 Sep;279(3):R1025-34 [PMID: 10956262]
  66. Peptides. 2006 Apr;27(4):719-27 [PMID: 16253390]
  67. Neurosci Lett. 2006 Jan 9;392(1-2):43-6 [PMID: 16209904]
  68. Comp Biochem Physiol A Mol Integr Physiol. 2007 Mar;146(3):451-61 [PMID: 17254820]
  69. PLoS One. 2016 Apr 21;11(4):e0153743 [PMID: 27100086]
  70. Comput Appl Biosci. 1992 Jun;8(3):275-82 [PMID: 1633570]
  71. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W375-9 [PMID: 15215414]
  72. Temperature (Austin). 2020 May 18;7(4):307-320 [PMID: 33251280]
  73. Brain Res Mol Brain Res. 1999 Dec 10;74(1-2):190-6 [PMID: 10640690]

Word Cloud

Created with Highcharts 10.0.0mRNAexpressionAtlanticsalmonfastingparalogsbrain4daysmidbrainappetiteYregionsabundantexpressedtelencephalonolfactorybulbhypothalamus0increasedLNeuropeptideNPYknownpotentorexigenicsignalvertebratesroleyetfullyestablishedstudyidentifiedthreenamedgenomeanalysisrevealedgeneswellconservedacrossvertebrate'slineagematurepeptidesequencessharedleast77%identityhumanhomologanalyzedeightpost-smolteffectlevelResultsshowparalogpredominantlyfollowedhighlyfoundhighestlowlevelsdetectedresultedsignificant<05decreasedecreasedpituitaryvertebratecentersignificantlyaffectedfeedingstatusHoweverobservedtrend=099followingAltogetherfindingsprovidesolidbasisresearchenergymetabolismRegionalExpressionParalogsBrainSalmonResponseFastingSalmosalarcontrolfullnessneuropeptide

Similar Articles

Cited By