Genomic Characterization of Multidrug-Resistant Serovars Derby and Rissen From the Pig Value Chain in Vietnam.

Belén González-Santamarina, Silvia García-Soto, Sinh Dang-Xuan, Mostafa Y Abdel-Glil, Diana Meemken, Reinhard Fries, Herbert Tomaso
Author Information
  1. Belén González-Santamarina: Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.
  2. Silvia García-Soto: Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.
  3. Sinh Dang-Xuan: International Livestock Research Institute, Hanoi, Vietnam.
  4. Mostafa Y Abdel-Glil: Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.
  5. Diana Meemken: Institute of Food Safety and Food Hygiene, Section Meat Hygiene, Freie Universität Berlin, Berlin, Germany.
  6. Reinhard Fries: Institute of Food Safety and Food Hygiene, Section Meat Hygiene, Freie Universität Berlin, Berlin, Germany.
  7. Herbert Tomaso: Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.

Abstract

Nontyphoidal (NTS) is the most reported cause of bacterial foodborne zoonoses in Vietnam, and contaminated pork is one of the main sources of human infection. In recent years, the prevalence of NTS carrying multiple antimicrobial resistance genes (ARGs) have been increased. The genomic characterization along the pig value chain and the identification of ARGs and plasmids have the potential to improve food safety by understanding the dissemination of ARGs from the farm to the table. We report an analysis of 13 . Derby and 10 . Rissen isolates, collected in 2013 at different stages in Vietnamese slaughterhouses and markets. VITEK 2 Compact System was used to characterize the phenotypical antimicrobial resistance of the isolates. In addition, whole-genome sequencing (WGS) was used to detect ARGs and plasmids conferring multidrug resistance. Whole genome single nucleotide polymorphism typing was used to determine the genetic diversity of the strains and the spread of ARGs along the pig value chain. Altogether, 86.9% (20/23) of the samples were resistant to at least one antibiotic. Resistance to ampicillin was most frequently detected (73.9%), followed by piperacillin and moxifloxacin (both 69.6%). At least one ARG was found in all strains, and 69.6% (16/23) were multidrug-resistant (MDR). The observed phenotype and genotype of antimicrobial resistance were not always concordant. Plasmid replicons were found in almost all strains [95.6% (22/23)], and the phylogenetic analysis detected nine clusters (. Derby, = 5; . Rissen, = 4). ARGs and plasmid content were almost identical within clusters. We found six MDR IncHI1s with identical plasmid sequence type in strains of different genetic clusters at the slaughterhouse and the market. In conclusion, high rates of multidrug resistance were observed in strains from Vietnam in 2013. Genomic analysis revealed many resistance genes and plasmids, which have the potential to spread along the pig value chain from the slaughterhouse to the market. This study pointed out that bioinformatics analyses of WGS data are essential to detect, trace back, and control the MDR strains along the pig value chain. Further studies are necessary to assess the more recent MDR strains spreading in Vietnam.

Keywords

References

  1. Emerg Infect Dis. 2017 Mar;23(3):529-532 [PMID: 28221105]
  2. Genome Res. 2009 Dec;19(12):2279-87 [PMID: 19901036]
  3. Clin Infect Dis. 2002 Jun 1;34 Suppl 3:S93-S106 [PMID: 11988879]
  4. Clin Microbiol Infect. 2013 Feb;19(2):141-60 [PMID: 22117544]
  5. Food Control. 2020 Jan;107:106756 [PMID: 31902975]
  6. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  7. mBio. 2016 Aug 23;7(4): [PMID: 27555304]
  8. Int Microbiol. 2017 Jun;20(2):85-93 [PMID: 28617526]
  9. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  10. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  11. BMC Genomics. 2018 Nov 6;19(1):801 [PMID: 30400810]
  12. Pathogens. 2019 Apr 04;8(2): [PMID: 30987404]
  13. Glob Chall. 2021 Jan 12;5(3):2000014 [PMID: 33728052]
  14. J Bacteriol. 2007 Jun;189(11):4257-64 [PMID: 17384186]
  15. Int J Antimicrob Agents. 2013 Aug;42(2):133-40 [PMID: 23746717]
  16. Front Microbiol. 2021 May 24;12:591929 [PMID: 34108944]
  17. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  18. Antimicrob Agents Chemother. 2013 Jun;57(6):2467-75 [PMID: 23478955]
  19. Rev Sci Tech. 2006 Aug;25(2):541-54 [PMID: 17094696]
  20. Ecohealth. 2016 Sep;13(3):490-498 [PMID: 27198232]
  21. J Food Prot. 2018 Sep;81(9):1459-1466 [PMID: 30084656]
  22. J Food Prot. 2010 Feb;73(2):376-9 [PMID: 20132687]
  23. Zoonoses Public Health. 2015 Mar;62(2):151-8 [PMID: 24931512]
  24. Front Microbiol. 2020 Jul 17;11:1741 [PMID: 32765483]
  25. Clin Microbiol Infect. 2017 Jan;23(1):2-22 [PMID: 27890457]
  26. J Antimicrob Chemother. 2012 Nov;67(11):2640-4 [PMID: 22782487]
  27. J Clin Microbiol. 2020 Nov 18;58(12): [PMID: 32907994]
  28. Genome Res. 2017 May;27(5):737-746 [PMID: 28100585]
  29. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  30. Methods Mol Biol. 2020;2075:285-294 [PMID: 31584170]
  31. J Antimicrob Chemother. 2018 May 1;73(5):1121-1137 [PMID: 29370371]
  32. Genome Biol Evol. 2016 Jun 13;8(6):1661-71 [PMID: 27189997]
  33. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 [PMID: 30931475]
  34. Pathogens. 2019 Jan 29;8(1): [PMID: 30700039]
  35. Environ Sci Pollut Res Int. 2019 Nov;26(33):34521-34530 [PMID: 31643014]
  36. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28533247]
  37. J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500 [PMID: 32780112]
  38. Clin Microbiol Rev. 2018 Aug 1;31(4): [PMID: 30068738]
  39. PLoS One. 2016 Jan 22;11(1):e0147101 [PMID: 26800248]
  40. PLoS One. 2021 Apr 22;16(4):e0250082 [PMID: 33886626]
  41. Int J Food Microbiol. 2018 Feb 2;266:301-309 [PMID: 29275223]
  42. Zoonoses Public Health. 2016 Nov;63(7):569-576 [PMID: 26952244]
  43. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  44. Genome Res. 2004 Jul;14(7):1394-403 [PMID: 15231754]
  45. Plasmid. 2013 May;69(3):202-10 [PMID: 23333216]
  46. Front Microbiol. 2020 May 14;11:889 [PMID: 32477304]
  47. Ann N Y Acad Sci. 2006 Oct;1081:269-72 [PMID: 17135524]
  48. Int J Food Microbiol. 2019 Feb 2;290:105-115 [PMID: 30317109]
  49. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31427293]
  50. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  51. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  52. Int J Food Microbiol. 2016 Nov 7;236:115-22 [PMID: 27479779]