The Antimicrobial Peptide MK58911-NH Acts on Planktonic, Biofilm, and Intramacrophage Cells of Cryptococcus neoformans.

Junya de Lacorte Singulani, Lariane Teodoro Oliveira, Marina Dorisse Ramos, Nathália Ferreira Fregonezi, Paulo César Gomes, Mariana Cristina Galeane, Mario Sergio Palma, Ana Marisa Fusco Almeida, Maria José Soares Mendes Giannini
Author Information
  1. Junya de Lacorte Singulani: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil.
  2. Lariane Teodoro Oliveira: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil.
  3. Marina Dorisse Ramos: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil.
  4. Nathália Ferreira Fregonezi: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil.
  5. Paulo César Gomes: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil.
  6. Mariana Cristina Galeane: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil.
  7. Mario Sergio Palma: Department of Basic and Applied Biology, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, Brazil.
  8. Ana Marisa Fusco Almeida: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil.
  9. Maria José Soares Mendes Giannini: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil. ORCID

Abstract

Cryptococcosis is associated with high rates of morbidity and mortality, especially in AIDS patients. Its treatment is carried out by combining amphotericin B and azoles or flucytosine, which causes unavoidable toxicity issues in the host. Thus, the urgency in obtaining new antifungals drives the search for antimicrobial peptides (AMPs). This study aimed to extend the understanding of the mechanism of action of an AMP analog from wasp peptide toxins, MK58911-NH, on Cryptococcus neoformans. We also evaluated if MK58911-NH can act on cryptococcal cells in macrophages, biofilms, and an immersion zebrafish model of infection. Finally, we investigated the structure-antifungal action and the toxicity relationship of MK58911-NH fragments and a derivative of this peptide (MH58911-NH). The results demonstrated that MK58911-NH did not alter the fluorescence intensity of the cell wall-binding dye calcofluor white or the capsule-binding dye 18b7 antibody-fluorescein isothiocyanate (FITC) in C. neoformans but rather reduced the number and size of fungal cells. This activity reduced the fungal burden of C. neoformans in both macrophages and zebrafish embryos as well as within biofilms. Three fragments of the MK58911-NH peptide showed no activity against Cryptococcus and not toxicity in lung cells. The derivative peptide MH58911-NH, in which the lysine residues of MK58911-NH were replaced by histidines, reduced the activity against extracellular and intracellular C. neoformans. On the other hand, it was active against biofilms and showed reduced toxicity. In summary, these results showed that peptide MK58911-NH could be a promising agent against cryptococcosis. This work also opens a perspective for the verification of the antifungal activity of other derivatives.

Keywords

References

  1. Front Cell Dev Biol. 2021 Apr 12;9:649875 [PMID: 33912564]
  2. Nat Protoc. 2008;3(9):1494-500 [PMID: 18772877]
  3. Clin Microbiol Rev. 2012 Jul;25(3):387-408 [PMID: 22763631]
  4. Nat Commun. 2018 Apr 19;9(1):1556 [PMID: 29674675]
  5. Glycobiology. 2018 Oct 1;28(10):719-730 [PMID: 29648596]
  6. Front Microbiol. 2019 Oct 04;10:2169 [PMID: 31681179]
  7. Eukaryot Cell. 2005 Feb;4(2):465-75 [PMID: 15701808]
  8. Curr Opin Microbiol. 2003 Aug;6(4):332-7 [PMID: 12941400]
  9. Cell Microbiol. 2013 Mar;15(3):403-11 [PMID: 23127124]
  10. Biochim Biophys Acta. 2014 Oct;1838(10):2357-68 [PMID: 24955498]
  11. Biochim Biophys Acta. 2016 May;1858(5):1044-60 [PMID: 26525663]
  12. Mycopathologia. 2012 Jun;173(5-6):303-10 [PMID: 21948062]
  13. Peptides. 2015 Oct;72:164-74 [PMID: 25944744]
  14. Infect Immun. 2006 Mar;74(3):1500-4 [PMID: 16495520]
  15. mBio. 2020 Nov 3;11(6): [PMID: 33144376]
  16. Curr Biol. 2006 Nov 7;16(21):2156-60 [PMID: 17084701]
  17. Biochim Biophys Acta. 2007 Nov;1768(11):2667-80 [PMID: 17655823]
  18. PLoS One. 2014 May 09;9(5):e93698 [PMID: 24817320]
  19. PLoS One. 2015 Nov 16;10(11):e0143048 [PMID: 26569623]
  20. Curr Biol. 2006 Nov 7;16(21):2161-5 [PMID: 17084702]
  21. Antimicrob Agents Chemother. 2006 Mar;50(3):1021-33 [PMID: 16495265]
  22. Materials (Basel). 2018 Dec 05;11(12): [PMID: 30563067]
  23. Int J Antimicrob Agents. 2016 Jul;48(1):69-77 [PMID: 27289450]
  24. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  25. Int J Microbiol. 2012;2012:528521 [PMID: 22518145]
  26. Methods Mol Biol. 2012;889:25-50 [PMID: 22669658]
  27. Appl Microbiol Biotechnol. 2015 Mar;99(5):2023-40 [PMID: 25586583]
  28. Biochim Biophys Acta. 2013 Mar;1828(3):1153-8 [PMID: 23262192]
  29. Peptides. 2014 Jun;56:22-9 [PMID: 24642357]
  30. J Am Acad Dermatol. 2008 May;58(5 Suppl 1):S95-6 [PMID: 18489059]
  31. Front Chem. 2018 Jun 05;6:204 [PMID: 29922648]
  32. Front Cell Infect Microbiol. 2019 Dec 06;9:419 [PMID: 31867293]
  33. mBio. 2015 Sep 29;6(5):e01425-15 [PMID: 26419880]
  34. Mem Inst Oswaldo Cruz. 2018;113(7):e170391 [PMID: 29513785]
  35. Eukaryot Cell. 2003 Aug;2(4):655-63 [PMID: 12912884]
  36. Nat Rev Drug Discov. 2020 May;19(5):311-332 [PMID: 32107480]
  37. Sci Rep. 2016 Feb 18;6:21489 [PMID: 26887656]
  38. Transpl Infect Dis. 2010 Jun;12(3):220-9 [PMID: 20113459]
  39. Lancet Infect Dis. 2017 Aug;17(8):873-881 [PMID: 28483415]
  40. Infect Immun. 2016 Sep 19;84(10):3047-62 [PMID: 27481252]
  41. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157-83 [PMID: 10590307]
  42. Am J Med. 2012 Jan;125(1 Suppl):S3-13 [PMID: 22196207]
  43. Infect Dis Clin North Am. 2016 Mar;30(1):51-83 [PMID: 26739608]
  44. Int J Biol Macromol. 2020 Jan 15;143:724-731 [PMID: 31734360]
  45. Antibiotics (Basel). 2020 Dec 08;9(12): [PMID: 33302565]
  46. AIDS. 2009 Feb 20;23(4):525-30 [PMID: 19182676]

Grants

  1. /Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  2. 2017/06658-9/Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  3. /MCTI | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

MeSH Term

Animals
Antifungal Agents
Antimicrobial Peptides
Biofilms
Cryptococcosis
Cryptococcus neoformans
Humans
Macrophages
Microbial Sensitivity Tests
Zebrafish

Chemicals

Antifungal Agents
Antimicrobial Peptides

Word Cloud

Created with Highcharts 10.0.0MK58911-NHpeptideneoformansactivitytoxicityCryptococcusreducedactioncellsbiofilmsCshowedantifungalantimicrobialalsomacrophageszebrafishfragmentsderivativeMH58911-NHresultsdyefungalcryptococcosissystemicCryptococcosisassociatedhighratesmorbiditymortalityespeciallyAIDSpatientstreatmentcarriedcombiningamphotericinBazolesflucytosinecausesunavoidableissueshostThusurgencyobtainingnewantifungalsdrivessearchpeptidesAMPsstudyaimedextendunderstandingmechanismAMPanalogwasptoxinsevaluatedcanactcryptococcalimmersionmodelinfectionFinallyinvestigatedstructure-antifungalrelationshipdemonstratedalterfluorescenceintensitycellwall-bindingcalcofluorwhitecapsule-binding18b7antibody-fluoresceinisothiocyanateFITCrathernumbersizeburdenembryoswellwithinThreelunglysineresiduesreplacedhistidinesextracellularintracellularhandactivesummarypromisingagentworkopensperspectiveverificationderivativesAntimicrobialPeptideActsPlanktonicBiofilmIntramacrophageCellsagentsbiofilmintramacrophagemechanismsnonconventionalanimalmodelsfungimycoses

Similar Articles

Cited By