Interactions of Polymyxin B in Combination with Aztreonam, Minocycline, Meropenem, and Rifampin against Escherichia coli Producing NDM and OXA-48-Group Carbapenemases.

Anna Olsson, Marcus Hong, Hissa Al-Farsi, Christian G Giske, Pernilla Lagerbäck, Thomas Tängdén
Author Information
  1. Anna Olsson: Department of Medical Sciences, Uppsala Universitygrid.8993.b, Uppsala, Sweden.
  2. Marcus Hong: Department of Medical Sciences, Uppsala Universitygrid.8993.b, Uppsala, Sweden.
  3. Hissa Al-Farsi: Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden.
  4. Christian G Giske: Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden. ORCID
  5. Pernilla Lagerbäck: Department of Medical Sciences, Uppsala Universitygrid.8993.b, Uppsala, Sweden.
  6. Thomas Tängdén: Department of Medical Sciences, Uppsala Universitygrid.8993.b, Uppsala, Sweden. ORCID

Abstract

Carbapenemase-producing pose an increasing medical threat. Combination therapy is often used for severe infections; however, there is little evidence supporting the optimal selection of drugs. This study aimed to determine the effects of polymyxin B combinations against carbapenemase-producing Escherichia coli. The interactions of polymyxin B in combination with aztreonam, meropenem, minocycline or rifampin against 20 clinical isolates of NDM and OXA-48-group-producing E. coli were evaluated using time-lapse microscopy; 24-h samples were spotted on plates with and without 4× MIC polymyxin B for viable counts. Whole-genome sequencing was applied to identify resistance genes and mutations. Finally, potential associations between combination effects and bacterial genotypes were assessed using Fisher's exact test. Synergistic and bactericidal effects were observed with polymyxin B and minocycline against 11/20 strains and with polymyxin B and rifampin against 9/20 strains. The combinations of polymyxin B and aztreonam or meropenem showed synergy against 2/20 strains. Negligible resistance development against polymyxin B was detected. Synergy with polymyxin B and minocycline was associated with genes involved in efflux (presence of , wild-type , and the mutation H44Q) and lipopolysaccharide synthesis ( C27Y, mutations, and L323S). Synergy with polymyxin B and rifampin was associated with sequence variations in , which plays a role in lipid A modification. Polymyxin B in combination with minocycline or rifampin frequently showed positive interactions against NDM- and OXA-48-group-producing E. coli. Synergy was associated with genes encoding efflux and components of the bacterial outer membrane.

Keywords

References

  1. Nat Commun. 2018 Jan 31;9(1):458 [PMID: 29386620]
  2. J Mol Biol. 2006 Oct 6;362(5):933-42 [PMID: 16949612]
  3. BMC Microbiol. 2019 Sep 5;19(1):210 [PMID: 31488061]
  4. Antimicrob Agents Chemother. 2010 Jun;54(6):2732-4 [PMID: 20368401]
  5. Infect Immun. 2000 Mar;68(3):1116-24 [PMID: 10678915]
  6. Antimicrob Agents Chemother. 2015 May;59(5):2720-5 [PMID: 25712362]
  7. J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500 [PMID: 32780112]
  8. J Bacteriol. 2002 Dec;184(23):6490-8 [PMID: 12426336]
  9. J Mol Microbiol Biotechnol. 2017;27(6):356-362 [PMID: 29339632]
  10. Nature. 2011 Nov 27;480(7378):565-9 [PMID: 22121023]
  11. Clin Microbiol Infect. 2018 Jul;24(7):778.e7-778.e14 [PMID: 29108951]
  12. Antimicrob Agents Chemother. 2020 May 21;64(6): [PMID: 32179531]
  13. Front Microbiol. 2019 Apr 30;10:953 [PMID: 31114568]
  14. EcoSal Plus. 2018 Aug;8(1): [PMID: 30066669]
  15. Lancet Infect Dis. 2018 Apr;18(4):391-400 [PMID: 29456043]
  16. Pharmacotherapy. 2019 Jan;39(1):10-39 [PMID: 30710469]
  17. J Mol Biol. 2019 Aug 23;431(18):3472-3500 [PMID: 30959050]
  18. Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656 [PMID: 14665678]
  19. Clin Microbiol Infect. 2020 Sep;26(9):1214-1221 [PMID: 32224200]
  20. Appl Microbiol Biotechnol. 2014 Oct;98(20):8763-73 [PMID: 25176444]
  21. Antimicrob Agents Chemother. 2014;58(3):1757-62 [PMID: 24395223]
  22. J Antimicrob Chemother. 2017 Jun 1;72(6):1635-1645 [PMID: 28204513]
  23. Int J Antimicrob Agents. 2018 Mar;51(3):479-483 [PMID: 29360506]
  24. Antimicrob Agents Chemother. 2010 Mar;54(3):1007-15 [PMID: 20038628]
  25. Clin Microbiol Rev. 2015 Apr;28(2):337-418 [PMID: 25788514]
  26. J Antimicrob Chemother. 2019 Jan 1;74(1):87-95 [PMID: 30346547]
  27. J Antimicrob Chemother. 2015 Aug;70(8):2228-33 [PMID: 25921515]
  28. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28971873]

Grants

  1. 180124/AFA Försäkring (AFA Insurance)
  2. 2015-06825/Joint Programming Initiative on Antimicrobial Resistance (JPIAMR)
  3. 2019-05911/Vetenskapsrådet (VR)

MeSH Term

Aztreonam
Bacterial Proteins
Escherichia coli
Klebsiella pneumoniae
Meropenem
Microbial Sensitivity Tests
Minocycline
Polymyxin B
Rifampin
beta-Lactamases

Chemicals

Bacterial Proteins
beta-Lactamases
carbapenemase
Meropenem
Minocycline
Aztreonam
Polymyxin B
Rifampin

Word Cloud

Created with Highcharts 10.0.0BpolymyxincolicombinationminocyclinerifampineffectsresistancegenesstrainsSynergyassociatedCombinationtherapycombinationsEscherichiainteractionsaztreonammeropenemNDMOXA-48-group-producingEusingmutationsbacterialshowedsynergyeffluxPolymyxinCarbapenemase-producingposeincreasingmedicalthreatoftenusedsevereinfectionshoweverlittleevidencesupportingoptimalselectiondrugsstudyaimeddeterminecarbapenemase-producing20clinicalisolatesevaluatedtime-lapsemicroscopy24-hsamplesspottedplateswithoutMICviablecountsWhole-genomesequencingappliedidentifyFinallypotentialassociationsgenotypesassessedFisher'sexacttestSynergisticbactericidalobserved11/209/202/20Negligibledevelopmentdetectedinvolvedpresencewild-typemutationH44QlipopolysaccharidesynthesisC27YL323SsequencevariationsplaysrolelipidmodificationfrequentlypositiveNDM-encodingcomponentsoutermembraneInteractionsAztreonamMinocyclineMeropenemRifampinProducingOXA-48-GroupCarbapenemasesGram-negativebacteriacarbapenempolymyxins

Similar Articles

Cited By