The anti-obesity effects of rhein on improving insulin resistance (IR) and blood lipid levels are involved in endoplasmic reticulum stress (ERs), inflammation, and oxidative stress in vivo and vitro.

Li Ji, Huan Gu
Author Information
  1. Li Ji: Department of Pediatrics, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, BeiJing, China.
  2. Huan Gu: Department of Cardiology of Integrated Traditional Chinese and Western Medicine China-Japan Friendship Hospital, BeiJing, China.

Abstract

Rhein extensive biological effects including anti-inflammatory, antioxidant stress, and improving glucose and lipid metabolism. In the present study, the effects of rhein were examined on endoplasmic reticulum stress (ERs) and inflammation in obesity-induced rats. SD rats were fed with a normal diet or a high-fat diet. Meanwhile, rats fed with high-fat diet were also administrated with different doses of rhein for 6 weeks. The pathologic changes of pathoaorta pectoralis were evaluated using hematoxyline eosin (HE) strain, and cell apoptosis levels were investigated using TUNEL staining and flow cytometry. We also performed p62 immunofluorescent staining in 3T3-L1 cells. In the present study, we found that rhein administration exerted inhibitory effects on weight, inflammatory factor levels, and oxidative stress. Meanwhile, insulin resistance (IR), blood lipid levels and pathological injury of aorta pectoralis were also improved by rhein administration. Besides, rhein also affected ERs in peripheral blood and adipose tissue . Moreover, rhein significantly reduced cell apoptosis in aorta pectoralis and adipose tissue in vivo. According to oil red staining, adipogenic differentiation was decreased by rhein treatment in vitro. Immunofluorescence staining of p62 showed that rhein contributed to a significant increase in p62 expression in vitro. In addition, rhein treatment significantly decreased peroxisome proliferators-activated receptor (PPAR)γ levels and upregulated insulin receptor (INSR) in vitro. In summary, the anti-obesity effects of rhein were considered to be related with the involvement of ERs, inflammation, oxidative stress, PPARγ, and INSR.

Keywords

References

  1. Mol Metab. 2017 Jul 12;6(9):1024-1039 [PMID: 28951826]
  2. Apoptosis. 2015 Mar;20(3):399-409 [PMID: 25501496]
  3. J Steroid Biochem Mol Biol. 2018 Apr;178:283-292 [PMID: 29339197]
  4. FASEB J. 2010 Jan;24(1):296-308 [PMID: 19723703]
  5. PLoS One. 2019 Jun 21;14(6):e0218792 [PMID: 31226166]
  6. Crit Rev Food Sci Nutr. 2020;60(4):660-669 [PMID: 30596263]
  7. Anticancer Res. 2009 Jan;29(1):309-18 [PMID: 19331167]
  8. J Asian Nat Prod Res. 2011 Aug;13(8):714-23 [PMID: 21751839]
  9. Am J Chin Med. 2018;46(5):1045-1063 [PMID: 29976086]
  10. Adv Exp Med Biol. 2017;960:277-304 [PMID: 28585204]
  11. Mol Med Rep. 2020 May;21(5):2041-2050 [PMID: 32323766]
  12. PLoS One. 2018 Jan 31;13(1):e0191793 [PMID: 29385192]
  13. Anticancer Agents Med Chem. 2017;17(12):1624-1632 [PMID: 26419468]
  14. Immunology. 2018 Dec;155(4):407-417 [PMID: 30229891]
  15. Bioengineered. 2021 Dec;12(1):3837-3849 [PMID: 34281481]
  16. Transl Psychiatry. 2018 Nov 29;8(1):258 [PMID: 30498208]
  17. Trends Endocrinol Metab. 2019 Mar;30(3):163-176 [PMID: 30691778]
  18. Exp Clin Endocrinol Diabetes. 2007 Oct;115(9):571-6 [PMID: 17943690]
  19. Sci Rep. 2015 Jul 07;5:11822 [PMID: 26149595]
  20. Adv Exp Med Biol. 2017;960:261-276 [PMID: 28585203]
  21. J Clin Invest. 2006 Nov;116(11):3015-25 [PMID: 17053832]
  22. Diabetes. 2018 Feb;67(2):235-247 [PMID: 29133512]
  23. World J Gastroenterol. 2020 Dec 14;26(46):7299-7311 [PMID: 33362385]
  24. J Cell Mol Med. 2019 Oct;23(10):7029-7042 [PMID: 31441588]
  25. Int J Mol Med. 2018 May;41(5):2802-2812 [PMID: 29436613]
  26. J Clin Invest. 2003 Dec;112(12):1821-30 [PMID: 14679177]
  27. Arch Cardiovasc Dis. 2020 Oct;113(10):617-629 [PMID: 32873522]
  28. Nat Rev Mol Cell Biol. 2008 May;9(5):367-77 [PMID: 18401346]
  29. Science. 1993 Jan 1;259(5091):87-91 [PMID: 7678183]
  30. Int J Mol Med. 2015 Apr;35(4):932-40 [PMID: 25647410]
  31. Probiotics Antimicrob Proteins. 2018 Jun;10(2):329-342 [PMID: 28677046]
  32. Bioengineered. 2021 Dec;12(1):4757-4767 [PMID: 34334083]
  33. Cell Commun Signal. 2021 May 25;19(1):61 [PMID: 34034759]
  34. Free Radic Biol Med. 2019 Sep;141:67-83 [PMID: 31153974]
  35. Nat Commun. 2020 Apr 20;11(1):1914 [PMID: 32313051]
  36. Metabolism. 2019 Mar;92:121-135 [PMID: 30445141]
  37. Nutrients. 2019 Jan 12;11(1): [PMID: 30642033]
  38. Stem Cell Res Ther. 2015 Oct 31;6:208 [PMID: 26519255]
  39. Front Pharmacol. 2019 Sep 10;10:977 [PMID: 31551782]
  40. J Agric Food Chem. 2019 Mar 6;67(9):2519-2529 [PMID: 30779558]
  41. Sheng Li Xue Bao. 2013 Dec 25;65(6):664-73 [PMID: 24343725]

MeSH Term

3T3-L1 Cells
Animals
Anthraquinones
Anti-Obesity Agents
Diet, High-Fat
Endoplasmic Reticulum Stress
Female
Inflammation
Insulin Resistance
Lipids
Mice
Oxidative Stress
Rats
Rats, Sprague-Dawley

Chemicals

Anthraquinones
Anti-Obesity Agents
Lipids
rhein

Word Cloud

Created with Highcharts 10.0.0rheinstresseffectslevelsERsinflammationalsostainingoxidativevitrolipidendoplasmicreticulumratsdietpectoralisapoptosisp62insulinbloodRheinimprovingpresentstudyfedhigh-fatMeanwhileusingcelladministrationresistanceIRaortaadiposetissuesignificantlyvivodecreasedtreatmentreceptorINSRanti-obesityextensivebiologicalincludinganti-inflammatoryantioxidantglucosemetabolismexaminedobesity-inducedSDnormaladministrateddifferentdoses6 weekspathologicchangespathoaortaevaluatedhematoxylineeosinHEstraininvestigatedTUNELflowcytometryperformedimmunofluorescent3T3-L1cellsfoundexertedinhibitoryweightinflammatoryfactorpathologicalinjuryimprovedBesidesaffectedperipheralMoreoverreducedAccordingoilredadipogenicdifferentiationImmunofluorescenceshowedcontributedsignificantincreaseexpressionadditionperoxisomeproliferators-activatedPPARγupregulatedsummaryconsideredrelatedinvolvementPPARγinvolvedobesity

Similar Articles

Cited By