Dynamical Phase Transitions in Quantum Reservoir Computing.

Rodrigo Martínez-Peña, Gian Luca Giorgi, Johannes Nokkala, Miguel C Soriano, Roberta Zambrini
Author Information
  1. Rodrigo Martínez-Peña: Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
  2. Gian Luca Giorgi: Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
  3. Johannes Nokkala: Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
  4. Miguel C Soriano: Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
  5. Roberta Zambrini: Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.

Abstract

Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.

Word Cloud

Created with Highcharts 10.0.0quantumdynamicalcomputingsystemsthermalizationmechanismsprocessinginformationphasesreservoirtasksClosedexhibitdifferentregimeslikemany-bodylocalizationdeterminespreadaddressimpactunconventionalparadigmrecentlyextendedregimeexploitssolvenonlineartemporalestablishthermalphasenaturallyadaptedrequirementsreportincreasedperformancetransitionstudiedUncoveringunderlyingphysicalbehindoptimalcapabilitiesspinnetworksessentialfutureexperimentalimplementationsprovidesnewperspectiveDynamicalPhaseTransitionsQuantumReservoirComputing

Similar Articles

Cited By