Fluorinated peptide biomaterials.

Janna N Sloand, Michael A Miller, Scott H Medina
Author Information
  1. Janna N Sloand: Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA.
  2. Michael A Miller: Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA.
  3. Scott H Medina: Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA. ORCID

Abstract

Fluorinated compounds, while rarely used by nature, are emerging as fundamental ingredients in biomedical research, with applications in drug discovery, metabolomics, biospectroscopy, and, as the focus of this review, peptide/protein engineering. Leveraging the fluorous effect to direct peptide assembly has evolved an entirely new class of organofluorine building blocks from which unique and bioactive materials can be constructed. Here, we discuss three distinct peptide fluorination strategies used to design and induce peptide assembly into nano-, micro-, and macrosupramolecular states that potentiate high-ordered organization into material scaffolds. These fluorine-tailored peptide assemblies employ the unique fluorous environment to boost biofunctionality for a broad range of applications, from drug delivery to antibacterial coatings. This review provides foundational tactics for peptide fluorination and discusses the utility of these fluorous-directed hierarchical structures as material platforms in diverse biomedical applications.

Keywords

References

  1. ACS Nano. 2019 Feb 26;13(2):1900-1909 [PMID: 30673202]
  2. Biochim Biophys Acta. 2016 May;1858(5):1012-23 [PMID: 26724205]
  3. Chem Soc Rev. 2014 Dec 7;43(23):8150-77 [PMID: 25199102]
  4. Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11188-11192 [PMID: 29969177]
  5. Phys Chem Chem Phys. 2017 Sep 13;19(35):23614-23631 [PMID: 28537604]
  6. Biomacromolecules. 2017 Nov 13;18(11):3471-3480 [PMID: 28776980]
  7. Iran J Basic Med Sci. 2013 Feb;16(2):150-6 [PMID: 24298383]
  8. Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11404-11408 [PMID: 28816007]
  9. Macromol Biosci. 2017 Aug;17(8): [PMID: 28524376]
  10. ACS Appl Mater Interfaces. 2016 Oct 26;8(42):28468-28479 [PMID: 27712073]
  11. ACS Nano. 2020 Apr 28;14(4):4061-4073 [PMID: 32134630]
  12. Org Lett. 2015 Sep 18;17(18):4468-71 [PMID: 26335611]
  13. Chem Soc Rev. 2018 May 21;47(10):3406-3420 [PMID: 29498728]
  14. J Pept Sci. 2019 Oct;25(10):e3212 [PMID: 31429163]
  15. Nat Rev Cancer. 2003 May;3(5):380-7 [PMID: 12724736]
  16. Nano Lett. 2020 Mar 11;20(3):1738-1746 [PMID: 32039603]
  17. Chem Commun (Camb). 2016 Jan 11;52(3):521-4 [PMID: 26535419]
  18. ACS Appl Mater Interfaces. 2019 Feb 27;11(8):7731-7742 [PMID: 30694643]
  19. Ultrasound Med Biol. 2000 Sep;26(7):1177-89 [PMID: 11053753]
  20. Biochim Biophys Acta Biomembr. 2020 Jun 1;1862(6):183260 [PMID: 32142822]
  21. Adv Drug Deliv Rev. 2017 Feb;110-111:169-187 [PMID: 27356149]
  22. Future Med Chem. 2012 Aug;4(12):1601-18 [PMID: 22917248]
  23. Chem Commun (Camb). 2015 Jun 30;51(56):11260-3 [PMID: 26081605]
  24. Acta Biomater. 2009 Mar;5(3):934-43 [PMID: 19249724]
  25. J Am Chem Soc. 2010 Mar 24;132(11):3658-9 [PMID: 20196598]
  26. ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9402-9415 [PMID: 28228013]
  27. Chem Soc Rev. 2012 Mar 21;41(6):2135-71 [PMID: 22130572]
  28. J Am Chem Soc. 2017 Jun 14;139(23):7823-7830 [PMID: 28571316]
  29. Magn Reson Med. 2020 Mar;83(3):974-987 [PMID: 31631402]
  30. Biomacromolecules. 2011 Jul 11;12(7):2735-45 [PMID: 21568346]
  31. Chem Soc Rev. 2007 Oct;36(10):1674-89 [PMID: 17721589]
  32. Biopolymers. 2017 Jan;108(1): [PMID: 27486924]
  33. Chem Soc Rev. 2014 May 21;43(10):3575-94 [PMID: 24626261]
  34. ACS Nano. 2015 Jan 27;9(1):761-8 [PMID: 25544315]
  35. Chem Soc Rev. 2016 Jul 11;45(14):3935-53 [PMID: 27115033]
  36. Biotechnol J. 2015 Mar;10(3):427-46 [PMID: 25728393]
  37. Chem Mater. 2017 May 23;29(10):4454-4460 [PMID: 28572704]
  38. Org Biomol Chem. 2019 Jan 16;17(3):664-674 [PMID: 30601550]
  39. Acc Chem Res. 2017 Sep 19;50(9):2093-2103 [PMID: 28803466]
  40. Biomacromolecules. 2019 Mar 11;20(3):1281-1287 [PMID: 30668906]
  41. Mol Ther. 2013 Jan;21(1):149-57 [PMID: 23032976]
  42. Nat Nanotechnol. 2015 Apr;10(4):353-60 [PMID: 25775151]
  43. Acta Biomater. 2014 Apr;10(4):1671-82 [PMID: 23958781]
  44. Angew Chem Int Ed Engl. 2011 Feb 1;50(5):1164-7 [PMID: 21268218]
  45. ACS Nano. 2017 Oct 24;11(10):10489-10494 [PMID: 28945958]
  46. Nat Biotechnol. 2000 Jan;18(1):33-7 [PMID: 10625387]
  47. J Am Chem Soc. 2001 May 16;123(19):4393-9 [PMID: 11457223]
  48. Chem Commun (Camb). 2013 Nov 21;49(90):10587-9 [PMID: 24091467]
  49. Nat Commun. 2015 Sep 08;6:8202 [PMID: 26347956]
  50. J Mater Sci Mater Med. 2015 Aug;26(8):219 [PMID: 26238777]
  51. Science. 2017 Nov 17;358(6365): [PMID: 29146781]
  52. Org Biomol Chem. 2015 Jan 28;13(4):1030-9 [PMID: 25410414]
  53. ACS Appl Mater Interfaces. 2019 Jun 19;11(24):21334-21342 [PMID: 31134790]
  54. Chem Commun (Camb). 2011 Jan 7;47(1):475-7 [PMID: 20936201]
  55. Bioconjug Chem. 2016 Jan 20;27(1):3-18 [PMID: 26473310]
  56. Artif Organs. 2010 Aug;34(8):622-34 [PMID: 20698841]
  57. Biochemistry. 2004 Dec 28;43(51):16277-84 [PMID: 15610021]
  58. J Org Chem. 2016 Aug 5;81(15):6364-73 [PMID: 27391099]
  59. Nat Commun. 2018 Aug 13;9(1):3217 [PMID: 30104564]
  60. J Org Chem. 2017 Jun 2;82(11):5826-5834 [PMID: 28485150]
  61. ACS Appl Mater Interfaces. 2017 Nov 22;9(46):39890-39894 [PMID: 28915004]
  62. Langmuir. 2016 Jan 26;32(3):787-99 [PMID: 26717444]
  63. Colloids Surf B Biointerfaces. 2013 Apr 1;104:163-8 [PMID: 23314490]
  64. Nat Commun. 2016 Jul 12;7:12252 [PMID: 27402325]
  65. Biomacromolecules. 2009 Sep 14;10(9):2646-51 [PMID: 19705843]
  66. Langmuir. 2011 Apr 5;27(7):4029-39 [PMID: 21401045]
  67. Nat Rev Cancer. 2004 Jun;4(6):437-47 [PMID: 15170446]
  68. Science. 2017 Jun 9;356(6342):1064-1068 [PMID: 28596363]
  69. Acc Chem Res. 2009 Jul 21;42(7):893-903 [PMID: 19537782]
  70. Chem Rev. 2019 Sep 25;119(18):10718-10801 [PMID: 31436087]
  71. Curr Protein Pept Sci. 2019;20(5):425-451 [PMID: 30767740]
  72. Adv Healthc Mater. 2020 Feb;9(3):e1901331 [PMID: 31851435]
  73. ACS Appl Mater Interfaces. 2016 Mar 9;8(9):5821-32 [PMID: 26887907]
  74. ACS Nano. 2017 Jul 25;11(7):7251-7258 [PMID: 28657711]
  75. Soft Matter. 2018 May 9;14(18):3528-3535 [PMID: 29675538]
  76. ACS Biomater Sci Eng. 2018 Dec 10;4(12):4051-4061 [PMID: 33418805]
  77. ACS Nano. 2018 Aug 28;12(8):8138-8144 [PMID: 30071165]
  78. Nano Today. 2016 Feb;11(1):41-60 [PMID: 27103939]
  79. Tumori. 1985 Jun 30;71(3):251-9 [PMID: 3895684]
  80. Nat Commun. 2016 Nov 18;7:13566 [PMID: 27857133]
  81. Org Biomol Chem. 2016 Jul 6;14(27):6457-62 [PMID: 27279124]
  82. Chem Soc Rev. 2018 May 21;47(10):3621-3639 [PMID: 29594277]
  83. Sci Rep. 2017 May 15;7(1):1893 [PMID: 28507344]
  84. Org Lett. 2017 Nov 3;19(21):5948-5951 [PMID: 29058438]
  85. Chemistry. 2016 May 4;22(19):6687-94 [PMID: 27004623]
  86. J Drug Target. 2012 Jun;20(5):433-44 [PMID: 22533704]
  87. ChemMedChem. 2016 May 19;11(10):1042-7 [PMID: 27095165]
  88. Biopolymers. 2015 Sep;104(5):601-10 [PMID: 25968595]
  89. Nat Nanotechnol. 2016 Apr;11(4):309-10 [PMID: 26751168]
  90. Chem Rev. 2001 Sep;101(9):2797-920 [PMID: 11749396]
  91. ACS Nano. 2015 May 26;9(5):5117-24 [PMID: 25868488]
  92. PLoS One. 2016 Nov 11;11(11):e0166587 [PMID: 27835700]
  93. Sci Rep. 2016 Jan 20;6:19518 [PMID: 26786784]
  94. Artif Organs. 2004 Sep;28(9):813-28 [PMID: 15320945]
  95. Future Med Chem. 2017 May;9(8):797-810 [PMID: 28485623]
  96. Biomacromolecules. 2012 Aug 13;13(8):2273-8 [PMID: 22789174]
  97. Gene Ther. 2017 May;24(5):282-289 [PMID: 28218744]
  98. ACS Nano. 2016 Aug 23;10(8):7376-84 [PMID: 27425636]
  99. Nat Mater. 2013 Nov;12(11):967-77 [PMID: 24150415]
  100. Nat Nanotechnol. 2016 Jan;11(1):95-102 [PMID: 26524396]
  101. ACS Nano. 2019 Mar 26;13(3):2969-2985 [PMID: 30758189]
  102. Nat Chem. 2017 Aug;9(8):805-809 [PMID: 28754939]
  103. ACS Nano. 2019 Aug 27;13(8):9292-9297 [PMID: 31314486]
  104. ACS Cent Sci. 2019 Nov 27;5(11):1750-1759 [PMID: 31807676]
  105. J Control Release. 1999 Aug 5;60(2-3):149-60 [PMID: 10425321]
  106. Beilstein J Org Chem. 2017 Dec 22;13:2869-2882 [PMID: 29564015]
  107. Biomacromolecules. 2015 Apr 13;16(4):1210-7 [PMID: 25794312]
  108. PLoS One. 2015 Aug 26;10(8):e0136567 [PMID: 26308214]
  109. Langmuir. 2019 Apr 2;35(13):4710-4717 [PMID: 30836752]
  110. ACS Appl Bio Mater. 2019 Apr 4;2(5):2116-2124 [PMID: 34136760]
  111. Langmuir. 2017 Jun 13;33(23):5803-5813 [PMID: 28514156]
  112. Angew Chem Int Ed Engl. 2017 Jun 1;56(23):6440-6444 [PMID: 28471097]
  113. Mol Ther. 2005 Jun;11(6):990-5 [PMID: 15922971]
  114. J Phys Chem B. 2017 Jul 13;121(27):6479-6491 [PMID: 28608690]
  115. Front Oncol. 2013 Aug 30;3:222 [PMID: 24010121]
  116. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 May;56(5):1006-17 [PMID: 19473917]
  117. Chem Soc Rev. 2016 Oct 21;45(20):5589-5604 [PMID: 27487936]
  118. Org Biomol Chem. 2015 Mar 21;13(11):3171-3181 [PMID: 25703116]
  119. Biochem Biophys Rep. 2015 Apr 25;2:1-13 [PMID: 29124140]
  120. J Org Chem. 2015 Sep 18;80(18):9185-91 [PMID: 26322827]
  121. Small. 2018 Dec;14(52):e1803544 [PMID: 30565848]
  122. Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1921-7 [PMID: 24420005]

Grants

  1. R01 CA117957/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0peptideapplicationsassemblyFluorinatedusedbiomedicaldrugreviewfluorousuniquefluorinationmaterialbiomaterialscompoundsrarelynatureemergingfundamentalingredientsresearchdiscoverymetabolomicsbiospectroscopyfocuspeptide/proteinengineeringLeveragingeffectdirectevolvedentirelynewclassorganofluorinebuildingblocksbioactivematerialscanconstructeddiscussthreedistinctstrategiesdesigninducenano-micro-macrosupramolecularstatespotentiatehigh-orderedorganizationscaffoldsfluorine-tailoredassembliesemployenvironmentboostbiofunctionalitybroadrangedeliveryantibacterialcoatingsprovidesfoundationaltacticsdiscussesutilityfluorous-directedhierarchicalstructuresplatformsdiversefluorinebiochemistrypeptidessupramolecular

Similar Articles

Cited By