Increasing the spatial and temporal impact of ecological research: A roadmap for integrating a novel terrestrial process into an Earth system model.

Emily Kyker-Snowman, Danica L Lombardozzi, Gordon B Bonan, Susan J Cheng, Jeffrey S Dukes, Serita D Frey, Elin M Jacobs, Risa McNellis, Joshua M Rady, Nicholas G Smith, R Quinn Thomas, William R Wieder, A Stuart Grandy
Author Information
  1. Emily Kyker-Snowman: Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA. ORCID
  2. Danica L Lombardozzi: Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA. ORCID
  3. Gordon B Bonan: Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA. ORCID
  4. Susan J Cheng: Department of Ecology and Evolutionary Biology and Center for Research on Learning and Teaching, University of Michigan, Ann Arbor, Michigan, USA. ORCID
  5. Jeffrey S Dukes: Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA. ORCID
  6. Serita D Frey: Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA. ORCID
  7. Elin M Jacobs: Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA. ORCID
  8. Risa McNellis: Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA. ORCID
  9. Joshua M Rady: Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia, USA. ORCID
  10. Nicholas G Smith: Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA. ORCID
  11. R Quinn Thomas: Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia, USA. ORCID
  12. William R Wieder: Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA. ORCID
  13. A Stuart Grandy: Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA. ORCID

Abstract

Terrestrial ecosystems regulate Earth's climate through water, energy, and biogeochemical transformations. Despite a key role in regulating the Earth system, terrestrial ecology has historically been underrepresented in the Earth system models (ESMs) that are used to understand and project global environmental change. Ecology and Earth system modeling must be integrated for scientists to fully comprehend the role of ecological systems in driving and responding to global change. Ecological insights can improve ESM realism and reduce process uncertainty, while ESMs offer ecologists an opportunity to broadly test ecological theory and increase the impact of their work by scaling concepts through time and space. Despite this mutualism, meaningfully integrating the two remains a persistent challenge, in part because of logistical obstacles in translating processes into mathematical formulas and identifying ways to integrate new theories and code into large, complex model structures. To help overcome this interdisciplinary challenge, we present a framework consisting of a series of interconnected stages for integrating a new ecological process or insight into an ESM. First, we highlight the multiple ways that ecological observations and modeling iteratively strengthen one another, dispelling the illusion that the ecologist's role ends with initial provision of data. Second, we show that many valuable insights, products, and theoretical developments are produced through sustained interdisciplinary collaborations between empiricists and modelers, regardless of eventual inclusion of a process in an ESM. Finally, we provide concrete actions and resources to facilitate learning and collaboration at every stage of data-model integration. This framework will create synergies that will transform our understanding of ecology within the Earth system, ultimately improving our understanding of global environmental change, and broadening the impact of ecological research.

Keywords

References

  1. New Phytol. 2015 Oct;208(2):324-9 [PMID: 26115197]
  2. New Phytol. 2005 Feb;165(2):351-71 [PMID: 15720649]
  3. Ecol Appl. 2017 Oct;27(7):2048-2060 [PMID: 28646611]
  4. Nature. 2019 Dec;576(7785):32-35 [PMID: 31797914]
  5. PLoS Comput Biol. 2020 Oct 1;16(10):e1008210 [PMID: 33001989]
  6. Science. 1982 Mar 19;215(4539):1498-501 [PMID: 17788673]
  7. Glob Chang Biol. 2013 Oct;19(10):2986-98 [PMID: 23744637]
  8. Br J Math Stat Psychol. 2010 Nov;63(Pt 3):665-94 [PMID: 20497626]
  9. Ecol Evol. 2020 Oct 02;10(22):12515-12527 [PMID: 33250990]
  10. New Phytol. 2014 Oct;204(1):12-14 [PMID: 25154642]
  11. New Phytol. 2017 Feb;213(3):1452-1465 [PMID: 27748949]
  12. Glob Chang Biol. 2020 Sep;26(9):5202-5216 [PMID: 32525621]
  13. New Phytol. 2017 Jan;213(1):22-42 [PMID: 27891647]
  14. Philos Trans A Math Phys Eng Sci. 2009 Mar 13;367(1890):833-46 [PMID: 19087933]
  15. New Phytol. 2018 Jun;218(4):1462-1477 [PMID: 29635689]
  16. Am Nat. 2021 Jul;198(1):53-68 [PMID: 34143717]
  17. Glob Chang Biol. 2020 Nov;26(11):6493-6510 [PMID: 32654330]
  18. PLoS One. 2015 Nov 18;10(11):e0143346 [PMID: 26581080]
  19. Bioscience. 2017 Jun 1;67(6):546-557 [PMID: 28584342]
  20. BMC Med Inform Decis Mak. 2009 Sep 15;9:43 [PMID: 19754966]
  21. Glob Chang Biol. 2013 Jan;19(1):45-63 [PMID: 23504720]
  22. Science. 1975 Feb 7;187(4175):434-5 [PMID: 17835307]
  23. Glob Chang Biol. 2022 Jan;28(2):665-684 [PMID: 34543495]
  24. Glob Chang Biol. 2021 Jan;27(1):13-26 [PMID: 33075199]
  25. Nat Ecol Evol. 2018 Sep;2(9):1443-1448 [PMID: 30013133]
  26. Nature. 2000 Nov 9;408(6809):184-7 [PMID: 11089968]
  27. Glob Chang Biol. 2020 Feb 24;: [PMID: 32091184]
  28. Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11201-6 [PMID: 16061800]
  29. Glob Chang Biol. 2018 Apr;24(4):1563-1579 [PMID: 29120516]
  30. Science. 2018 Aug 31;361(6405):916-919 [PMID: 30166490]
  31. New Phytol. 2011 Jul;191(1):15-18 [PMID: 21631506]
  32. Ecol Lett. 2019 Mar;22(3):506-517 [PMID: 30609108]
  33. Science. 1979 Dec 21;206(4425):1363-8 [PMID: 17739279]
  34. Nat Commun. 2018 Jun 4;9(1):2171 [PMID: 29867087]
  35. Hum Resour Health. 2013 May 10;11:19 [PMID: 23663329]
  36. Glob Chang Biol. 2018 Dec;24(12):5708-5723 [PMID: 30218538]
  37. Nat Plants. 2020 May;6(5):444-453 [PMID: 32393882]
  38. Nat Plants. 2017 Sep;3(9):734-741 [PMID: 29150690]
  39. Glob Chang Biol. 2020 Jan 11;: [PMID: 31926046]
  40. Glob Chang Biol. 2013 Jun;19(6):1759-79 [PMID: 23504858]
  41. Nature. 2011 Aug 31;477(7362):78-81 [PMID: 21886160]
  42. Science. 2008 Jun 13;320(5882):1444-9 [PMID: 18556546]
  43. Plant Cell Environ. 2007 Sep;30(9):1176-90 [PMID: 17661754]
  44. Ecol Evol. 2020 Dec 07;11(4):1480-1491 [PMID: 33613983]
  45. Glob Chang Biol. 2015 Mar;21(3):1182-96 [PMID: 25392967]
  46. Science. 2018 Feb 2;359(6375): [PMID: 29420265]
  47. J Exp Bot. 2010 Mar;61(5):1293-309 [PMID: 20202998]
  48. Nature. 2021 Apr;592(7853):258-261 [PMID: 33828317]
  49. Am Nat. 2013 Mar;181(3):314-30 [PMID: 23448882]
  50. Ecol Lett. 2014 Jan;17(1):82-91 [PMID: 24215231]
  51. Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3663-3668 [PMID: 29555758]
  52. New Phytol. 2017 Feb;213(3):976-982 [PMID: 27859388]
  53. New Phytol. 2014 Aug;203(3):883-99 [PMID: 24844873]
  54. New Phytol. 2014 May;202(3):803-822 [PMID: 24467623]

MeSH Term

Earth, Planet
Ecology
Ecosystem
Uncertainty
Water

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0EarthsystemecologicalglobalprocessroleecologymodelschangemodelingESMimpactintegratinginterdisciplinaryDespiteterrestrialESMsenvironmentalinsightschallengewaysnewmodelframeworkdata-modelintegrationwillunderstandingTerrestrialecosystemsregulateEarth'sclimatewaterenergybiogeochemicaltransformationskeyregulatinghistoricallyunderrepresentedusedunderstandprojectEcologymustintegratedscientistsfullycomprehendsystemsdrivingrespondingEcologicalcanimproverealismreduceuncertaintyofferecologistsopportunitybroadlytesttheoryincreaseworkscalingconceptstimespacemutualismmeaningfullytworemainspersistentpartlogisticalobstaclestranslatingprocessesmathematicalformulasidentifyingintegratetheoriescodelargecomplexstructureshelpovercomepresentconsistingseriesinterconnectedstagesinsightFirsthighlightmultipleobservationsiterativelystrengthenoneanotherdispellingillusionecologist'sendsinitialprovisiondataSecondshowmanyvaluableproductstheoreticaldevelopmentsproducedsustainedcollaborationsempiricistsmodelersregardlesseventualinclusionFinallyprovideconcreteactionsresourcesfacilitatelearningcollaborationeverystagecreatesynergiestransformwithinultimatelyimprovingbroadeningresearchIncreasingspatialtemporalresearch:roadmapnovelcollaborativebridginghistoryworkflowacrossscales

Similar Articles

Cited By