Clinical and molecular characterization of five Chinese patients with autosomal recessive osteopetrosis.

Huanhuan Liang, Niu Li, Ru-En Yao, Tingting Yu, Lixia Ding, Jing Chen, Jian Wang
Author Information
  1. Huanhuan Liang: Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ORCID
  2. Niu Li: Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ORCID
  3. Ru-En Yao: Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ORCID
  4. Tingting Yu: Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  5. Lixia Ding: Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  6. Jing Chen: Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  7. Jian Wang: Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Abstract

BACKGROUND: Osteopetrosis is characterized by increased bone density and bone marrow cavity stenosis due to a decrease in the number of osteoclasts or the dysfunction of their differentiation and absorption properties usually caused by biallelic variants of the TCIRG1 and CLCN7 genes.
METHODS: In this study, we describe five Chinese children who presented with anemia, thrombocytopenia, hepatosplenomegaly, repeated infections, and increased bone density. Whole-exome sequencing identified five compound heterozygous variants of the CLCN7 and TCIRG1 genes in these patients.
RESULTS: Patient 1 had a novel variant c.1555C>T (p.L519F) and a previously reported pathogenic variant c.2299C>T (p.R767W) in CLCN7. Patient 2 harbored a novel missense variant (c.1025T>C; p.L342P) and a novel splicing variant (c.286-9G>A) in CLCN7. Patients 3A and 3B from one family displayed the same compound heterozygous TCIRG1 variant, including a novel frameshift variant (c.1370del; p.T457Tfs*71) and a novel splicing variant (c.1554+2T>C). In Patient 4, two novel variants were identified in the TCIRG1 gene: c.676G>T; p.E226* and c.1191del; p.P398Sfs*5. Patient 5 harbored two known pathogenic variants, c.909C>A (p.Y303*) and c.2008C>T (p.R670*), in TCIRG1. Analysis of the products obtained from the reverse transcription-polymerase chain reaction revealed that the c.286-9G>A variant in CLCN7 of patient 2 leads to intron 3 retention, resulting in the formation of a premature termination codon (p.E95Vfs*8). These five patients were eventually diagnosed with autosomal recessive osteopetrosis, and the three children with TCIRG1 variants received hematopoietic stem cell transplantation.
CONCLUSIONS: Our results expand the spectrum of variation of genes related to osteopetrosis and deepen the understanding of the relationship between the genotype and clinical characteristics of osteopetrosis.

Keywords

References

  1. Am J Hematol. 2009 Aug;84(8):473-9 [PMID: 19507210]
  2. Calcif Tissue Int. 2004 Jan;74(1):42-6 [PMID: 14564431]
  3. Gene. 2013 Mar 10;516(2):311-5 [PMID: 23296056]
  4. Gene. 2016 Jan 15;576(1 Pt 1):176-81 [PMID: 26477479]
  5. Haematologica. 2020 Jan 16;106(1):74-86 [PMID: 31949009]
  6. Clin Genet. 2017 Jul;92(1):80-85 [PMID: 27187610]
  7. J Bone Miner Metab. 2009;27(4):444-51 [PMID: 19288050]
  8. Nat Genet. 1999 Dec;23(4):447-51 [PMID: 10581033]
  9. J Bone Miner Res. 2015 Oct;30(10):1814-21 [PMID: 25829125]
  10. J Bone Miner Res. 2014 Jul;29(7):1646-50 [PMID: 24535816]
  11. J Bone Miner Metab. 2012 May;30(3):338-48 [PMID: 21947783]
  12. EMBO J. 2005 Mar 9;24(5):1079-91 [PMID: 15706348]
  13. Tohoku J Exp Med. 2014;234(4):309-12 [PMID: 25504019]
  14. Mol Med Rep. 2019 Jun;19(6):5030-5038 [PMID: 30942407]
  15. Ital J Pediatr. 2014 Nov 20;40:90 [PMID: 25410126]
  16. Mil Med. 2017 Mar;182(3):e1886-e1888 [PMID: 28290981]
  17. Osteoporos Int. 2012 Nov;23(11):2713-8 [PMID: 22231430]
  18. Acta Pharmacol Sin. 2017 Nov;38(11):1456-1465 [PMID: 28816234]
  19. Mol Pain. 2016 Jun 20;12: [PMID: 27325559]
  20. J Pediatr. 2015 Aug;167(2):486-8 [PMID: 25982139]
  21. Eur J Hum Genet. 2009 May;17(5):664-72 [PMID: 19172990]
  22. BMC Med Genet. 2017 Dec 13;18(1):148 [PMID: 29237407]
  23. Clin Genet. 2015 Jul;88(1):74-9 [PMID: 24989235]
  24. Stem Cell Res Ther. 2020 May 15;11(1):179 [PMID: 32414402]
  25. Calcif Tissue Int. 2009 Jan;84(1):1-12 [PMID: 19082854]
  26. Calcif Tissue Int. 2012 Oct;91(4):250-4 [PMID: 22847576]
  27. J Clin Endocrinol Metab. 2007 Mar;92(3):771-8 [PMID: 17164308]
  28. Genet Med. 2015 May;17(5):405-24 [PMID: 25741868]
  29. Eur J Pediatr. 2009 Dec;168(12):1449-54 [PMID: 19238435]
  30. Eur J Hum Genet. 2017 Sep;25(9):1092-1095 [PMID: 28612835]
  31. Sci STKE. 2004 May 11;2004(233):re8 [PMID: 15150424]
  32. Eur J Med Genet. 2013 Jan;56(1):36-8 [PMID: 23085203]
  33. Mol Med Rep. 2014 Apr;9(4):1191-6 [PMID: 24535484]
  34. Nat Rev Endocrinol. 2013 Sep;9(9):522-36 [PMID: 23877423]
  35. Mol Ther Methods Clin Dev. 2020 Dec 25;20:389-397 [PMID: 33575431]
  36. Science. 2015 May 8;348(6235):666-9 [PMID: 25954003]
  37. Hum Mutat. 2004 Sep;24(3):225-35 [PMID: 15300850]
  38. Mol Genet Genomic Med. 2021 Nov;9(11):e1815 [PMID: 34545712]
  39. J Bone Miner Metab. 2016 Jul;34(4):440-6 [PMID: 26056022]
  40. Bone. 2014 Feb;59:122-6 [PMID: 24269275]
  41. Pediatr Int. 2014 Oct;56(5):779-82 [PMID: 25335998]
  42. J Bone Miner Res. 2003 Aug;18(8):1513-8 [PMID: 12929941]
  43. Hum Mol Genet. 2001 Aug 15;10(17):1767-73 [PMID: 11532986]
  44. Calcif Tissue Int. 2016 Dec;99(6):638-648 [PMID: 27541021]

MeSH Term

Child, Preschool
Chloride Channels
Female
Genes, Recessive
Humans
Infant
Male
Mutation
Osteopetrosis
Vacuolar Proton-Translocating ATPases

Chemicals

CLCN7 protein, human
Chloride Channels
TCIRG1 protein, human
Vacuolar Proton-Translocating ATPases

Word Cloud

Created with Highcharts 10.0.0cvariantpnovelvariantsTCIRG1CLCN7osteopetrosisfivePatientbonepatientsautosomalrecessiveincreaseddensityChinesechildrensequencingidentifiedcompoundheterozygouspathogenicsplicing286-9G>AtwoBACKGROUND:OsteopetrosischaracterizedmarrowcavitystenosisduedecreasenumberosteoclastsdysfunctiondifferentiationabsorptionpropertiesusuallycausedbiallelicCLCN7 genesMETHODS:studydescribepresentedanemiathrombocytopeniahepatosplenomegalyrepeatedinfectionsWhole-exomeTCIRG1 genesRESULTS:1 had1555C>TL519Fpreviouslyreported2299C>TR767W2 harboredmissense1025T>CL342PPatients3A3Bonefamilydisplayedincludingframeshift1370delT457Tfs*711554+2T>C4TCIRG1 gene:676G>TE226*1191delP398Sfs*55 harboredknown909C>AY303*2008C>TR670*Analysisproductsobtainedreversetranscription-polymerasechainreactionrevealedpatient2 leadsintron3retentionresultingformationprematureterminationcodonE95Vfs*8eventuallydiagnosedthreereceivedhematopoieticstemcelltransplantationCONCLUSIONS:resultsexpandspectrumvariationgenesrelateddeepenunderstandingrelationshipgenotypeclinicalcharacteristicsClinicalmolecularcharacterizationcDNA

Similar Articles

Cited By