Effect of food source availability in the salivary gland transcriptome of the unique burying beetle Nicrophorus pustulatus (Coleoptera: Silphidae).

Christian O Ayala-Ortiz, Jacob W Farriester, Carrie J Pratt, Anna K Goldkamp, Jessica Matts, W Wyatt Hoback, John E Gustafson, Darren E Hagen
Author Information
  1. Christian O Ayala-Ortiz: Department of Animal and Food Science, Oklahoma State University, Stillwater, Oklahoma, United States of America. ORCID
  2. Jacob W Farriester: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America.
  3. Carrie J Pratt: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America.
  4. Anna K Goldkamp: Department of Animal and Food Science, Oklahoma State University, Stillwater, Oklahoma, United States of America. ORCID
  5. Jessica Matts: Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America.
  6. W Wyatt Hoback: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America.
  7. John E Gustafson: Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America.
  8. Darren E Hagen: Department of Animal and Food Science, Oklahoma State University, Stillwater, Oklahoma, United States of America. ORCID

Abstract

Nicrophorus is a genus of beetles that bury and transform small vertebrate carcasses into a brood ball coated with their oral and anal secretions to prevent decay and that will serve as a food source for their young. Nicrophorus pustulatus is an unusual species with the ability to overtake brood of other burying beetles and whose secretions, unlike other Nicrophorus species, has been reported not to exhibit antimicrobial properties. This work aims to better understand how the presence or absence of a food source influences the expression of genes involved in the feeding process of N. pustulatus. To achieve that, total RNA was extracted from pooled samples of salivary gland tissue from N. pustulatus and sequenced using an Illumina platform. The resulting reads were used to assemble a de novo transcriptome using Trinity. Duplicates with more than 95% similarity were removed to obtain a "unigene" set. Annotation of the unigene set was done using the Trinotate pipeline. Transcript abundance was determined using Kallisto and differential gene expression analysis was performed using edgeR. A total of 651 genes were found to be differentially expressed, including 390 upregulated and 261 downregulated genes in fed insects compared to starved. Several genes upregulated in fed beetles are associated with the insect immune response and detoxification processes with only one transcript encoding for the antimicrobial peptide (AMP) defensin. These results confirm that N. pustulatus does not upregulate the production of genes encoding AMPs during feeding. This study provides a snapshot of the changes in gene expression in the salivary glands of N. pustulatus following feeding while providing a well described transcriptome for the further analysis of this unique burying beetle.

References

  1. J Evol Biol. 2012 May;25(5):930-7 [PMID: 22409257]
  2. J Autoimmune Dis. 2009 Jun 25;6:4 [PMID: 19555503]
  3. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  4. Annu Rev Entomol. 1998;43:595-618 [PMID: 15012399]
  5. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17890-5 [PMID: 19001269]
  6. Horm Behav. 2007 Feb;51(2):281-5 [PMID: 17184781]
  7. Mol Biol Evol. 2018 Mar 1;35(3):543-548 [PMID: 29220515]
  8. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  9. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  10. Genome Biol Evol. 2015 Oct 09;7(12):3383-96 [PMID: 26454014]
  11. PLoS One. 2016 Jul 21;11(7):e0158565 [PMID: 27442123]
  12. Nucleic Acids Res. 2012 May;40(10):4288-97 [PMID: 22287627]
  13. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  14. Insect Mol Biol. 2011 Dec;20(6):787-800 [PMID: 21929718]
  15. Ecol Evol. 2017 Nov 07;7(24):10743-10751 [PMID: 29299254]
  16. Sci Rep. 2016 May 03;6:25409 [PMID: 27139635]
  17. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  18. Evolution. 2017 Aug;71(8):1999-2009 [PMID: 28542920]
  19. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  20. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  21. Insect Biochem Mol Biol. 2011 May;41(5):294-305 [PMID: 21288489]
  22. Appl Environ Microbiol. 2017 Apr 17;83(9): [PMID: 28213538]
  23. Proc Biol Sci. 2016 Jan 27;283(1823): [PMID: 26817769]
  24. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  25. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  26. PLoS One. 2013;8(1):e52004 [PMID: 23326321]
  27. Proc Natl Acad Sci U S A. 1989 Jan;86(1):262-6 [PMID: 2911573]
  28. Nat Commun. 2015 Sep 29;6:8449 [PMID: 26416581]
  29. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  30. Virulence. 2012 Oct 1;3(6):497-503 [PMID: 23076277]
  31. Adv Exp Med Biol. 2010;708:181-204 [PMID: 21528699]
  32. J Evol Biol. 2007 Nov;20(6):2389-99 [PMID: 17956400]
  33. J Chem Ecol. 2004 Apr;30(4):719-29 [PMID: 15260219]
  34. PLoS Comput Biol. 2011 Oct;7(10):e1002195 [PMID: 22039361]
  35. Mol Cell. 2018 Feb 15;69(4):539-550.e6 [PMID: 29452635]
  36. Arthropod Struct Dev. 2012 May;41(3):245-57 [PMID: 22406081]
  37. PLoS One. 2014 Jan 23;9(1):e86012 [PMID: 24465841]
  38. Anim Behav. 1998 Jan;55(1):97-107 [PMID: 9480676]
  39. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 [PMID: 26673716]
  40. Cell Rep. 2017 Jan 17;18(3):762-776 [PMID: 28099853]
  41. Front Chem. 2017 Jul 12;5:45 [PMID: 28748179]
  42. Mol Phylogenet Evol. 2012 Oct;65(1):276-86 [PMID: 22732596]
  43. Environ Entomol. 2011 Jun;40(3):669-78 [PMID: 22251646]
  44. Front Cell Infect Microbiol. 2017 Nov 21;7:476 [PMID: 29209593]
  45. Infect Genet Evol. 2016 Mar;38:62-72 [PMID: 26705239]
  46. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  47. Annu Rev Entomol. 1991;36:205-28 [PMID: 2006868]
  48. J Insect Sci. 2015 Oct 08;15: [PMID: 26450592]
  49. Methods Mol Biol. 2007;406:89-112 [PMID: 18287689]
  50. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  51. J Chem Ecol. 2009 Aug;35(8):871-7 [PMID: 19690920]
  52. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  53. Nucleic Acids Res. 2007;35(9):3100-8 [PMID: 17452365]
  54. J Genomics. 2018 Apr 10;6:41-52 [PMID: 29707046]
  55. J Chem Ecol. 2011 Jul;37(7):724-35 [PMID: 21667150]

MeSH Term

Animals
Bodily Secretions
Coleoptera
Feeding Behavior
Food
Gene Expression Regulation
Insect Proteins
Salivary Glands
Transcriptome

Chemicals

Insect Proteins

Word Cloud

Created with Highcharts 10.0.0pustulatusgenesusingNicrophorusNbeetlesfoodsourceburyingexpressionfeedingsalivarytranscriptomebroodsecretionsspeciesantimicrobialtotalglandsetgeneanalysisupregulatedfedencodinguniquebeetlegenusburytransformsmallvertebratecarcassesballcoatedoralanalpreventdecaywillserveyoungunusualabilityovertakewhoseunlikereportedexhibitpropertiesworkaimsbetterunderstandpresenceabsenceinfluencesinvolvedprocessachieveRNAextractedpooledsamplestissuesequencedIlluminaplatformresultingreadsusedassembledenovoTrinityDuplicates95%similarityremovedobtain"unigene"AnnotationunigenedoneTrinotatepipelineTranscriptabundancedeterminedKallistodifferentialperformededgeR651founddifferentiallyexpressedincluding390261downregulatedinsectscomparedstarvedSeveralassociatedinsectimmuneresponsedetoxificationprocessesonetranscriptpeptideAMPdefensinresultsconfirmupregulateproductionAMPsstudyprovidessnapshotchangesglandsfollowingprovidingwelldescribedEffectavailabilityColeoptera:Silphidae

Similar Articles

Cited By