Reduced Dopamine Signaling Impacts Pyramidal Neuron Excitability in Mouse Motor Cortex.

Olivia K Swanson, Rosa Semaan, Arianna Maffei
Author Information
  1. Olivia K Swanson: Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794.
  2. Rosa Semaan: Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794.
  3. Arianna Maffei: Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794 Arianna.maffei@stonybrook.edu. ORCID

Abstract

Dopaminergic modulation is essential for the control of voluntary movement; however, the role of dopamine in regulating the neural excitability of the primary motor cortex (M1) is not well understood. Here, we investigated two modes by which dopamine influences the input/output function of M1 neurons. To test the direct regulation of M1 neurons by dopamine, we performed whole-cell recordings of excitatory neurons and measured excitability before and after local, acute dopamine receptor blockade. We then determined whether chronic depletion of dopaminergic input to the entire motor circuit, via a Mouse model of Parkinson's disease, was sufficient to shift M1 neuron excitability. We show that D1 receptor (D1R) and D2R antagonism altered subthreshold and suprathreshold properties of M1 pyramidal neurons in a layer-specific fashion. The effects of D1R antagonism were primarily driven by changes to intrinsic properties, while the excitability shifts following D2R antagonism relied on synaptic transmission. In contrast, chronic depletion of dopamine to the motor circuit with 6-hydroxydopamine induced layer-specific synaptic transmission-dependent shifts in M1 neuron excitability that only partially overlapped with the effects of acute D1R antagonism. These results suggest that while acute and chronic changes in dopamine modulate the input/output function of M1 neurons, the mechanisms engaged are distinct depending on the duration and origin of the manipulation. Our study highlights the broad influence of dopamine on M1 excitability by demonstrating the consequences of local and global dopamine depletion on neuronal input/output function.

Keywords

References

  1. Trends Neurosci. 1989 Oct;12(10):366-75 [PMID: 2479133]
  2. Front Cell Neurosci. 2014 Aug 21;8:247 [PMID: 25191229]
  3. J Comp Neurol. 1989 Apr 8;282(2):191-205 [PMID: 2496154]
  4. J Neurophysiol. 2014 Dec 1;112(11):2779-90 [PMID: 25185810]
  5. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76 [PMID: 18344392]
  6. Nat Methods. 2019 Jul;16(7):565-566 [PMID: 31217592]
  7. Front Aging Neurosci. 2014 May 13;6:87 [PMID: 24860498]
  8. J Comput Neurosci. 2012 Oct;33(2):207-25 [PMID: 22310969]
  9. Nat Neurosci. 2015 Sep;18(9):1299-1309 [PMID: 26237365]
  10. Front Neural Circuits. 2014 Feb 28;8:13 [PMID: 24616667]
  11. J Neurosci. 2006 Mar 22;26(12):3229-44 [PMID: 16554474]
  12. Cereb Cortex. 2019 Jul 5;29(7):3224-3242 [PMID: 30566584]
  13. J Neurophysiol. 2002 Dec;88(6):3439-51 [PMID: 12466459]
  14. Neuroscience. 2009 Mar 17;159(2):692-700 [PMID: 19162136]
  15. Front Comput Neurosci. 2013 Nov 11;7:163 [PMID: 24273509]
  16. PLoS One. 2013;8(3):e57054 [PMID: 23469183]
  17. Cereb Cortex. 2019 Apr 1;29(4):1802-1815 [PMID: 30721984]
  18. Ann Neurol. 1991 Sep;30(3):365-74 [PMID: 1683212]
  19. Front Neural Circuits. 2017 Oct 09;11:72 [PMID: 29062274]
  20. Brain Struct Funct. 2012 Apr;217(2):591-612 [PMID: 21935672]
  21. eNeuro. 2019 Aug 1;6(4): [PMID: 31453316]
  22. Cereb Cortex. 2004 Nov;14(11):1276-86 [PMID: 15166101]
  23. Nat Neurosci. 2008 Mar;11(3):360-6 [PMID: 18246064]
  24. Trends Neurosci. 2007 May;30(5):228-35 [PMID: 17408758]
  25. Clin Neurophysiol. 2005 Feb;116(2):244-53 [PMID: 15661100]
  26. J Neurosci. 2012 Aug 8;32(32):10995-1004 [PMID: 22875933]
  27. PLoS One. 2014 Mar 19;9(3):e92557 [PMID: 24647720]
  28. J Microsc. 1986 Jul;143(Pt 1):3-45 [PMID: 3761363]
  29. Cereb Cortex. 2016 Aug;26(8):3494-507 [PMID: 27193420]
  30. J Comp Neurol. 1998 Dec 21;402(3):353-71 [PMID: 9853904]
  31. J Comp Neurol. 1978 Aug 1;180(3):545-80 [PMID: 659674]
  32. PLoS One. 2009 Sep 17;4(9):e7082 [PMID: 19759902]
  33. Brain Res. 2008 May 1;1207:102-10 [PMID: 18377879]
  34. Neuron. 2019 Mar 20;101(6):1042-1056 [PMID: 30897356]
  35. Nat Neurosci. 2011 Jan;14(1):85-92 [PMID: 21076425]
  36. J Neurosci. 2013 Jan 9;33(2):748-60 [PMID: 23303952]
  37. J Neurosci. 2012 Oct 3;32(40):13718-28 [PMID: 23035084]
  38. Front Neurol. 2018 Jun 19;9:455 [PMID: 29971039]
  39. Curr Opin Neurobiol. 2016 Oct;40:125-134 [PMID: 27479655]
  40. Cereb Cortex. 1998 Jun;8(4):321-45 [PMID: 9651129]
  41. Cereb Cortex. 2011 Apr;21(4):865-76 [PMID: 20739477]
  42. Biochem Soc Trans. 2010 Apr;38(2):493-7 [PMID: 20298209]
  43. Nat Commun. 2014 Oct 31;5:5316 [PMID: 25360704]
  44. PLoS One. 2015 May 04;10(5):e0124986 [PMID: 25938462]
  45. Nat Neurosci. 2006 Feb;9(2):251-9 [PMID: 16415865]
  46. J Neurosci. 2011 Feb 16;31(7):2481-7 [PMID: 21325515]
  47. J Neurophysiol. 2011 Nov;106(5):2216-31 [PMID: 21795621]
  48. Neuron. 2016 Feb 17;89(4):734-40 [PMID: 26833136]
  49. Prog Neurobiol. 1996 Nov;50(4):381-425 [PMID: 9004351]
  50. J Neurophysiol. 2016 Dec 1;116(6):2815-2830 [PMID: 27582295]
  51. Brain. 2001 Mar;124(Pt 3):558-70 [PMID: 11222456]
  52. Front Neuroanat. 2015 Feb 05;9:5 [PMID: 25698937]
  53. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2737-50 [PMID: 24113323]
  54. Neuroreport. 2000 Mar 20;11(4):785-9 [PMID: 10757520]
  55. Nat Neurosci. 2015 Sep;18(9):1196-8 [PMID: 26308978]
  56. Brain Res Mol Brain Res. 1998 Jul 15;58(1-2):231-6 [PMID: 9685656]
  57. Neurosci Lett. 2001 Jul 20;307(3):175-8 [PMID: 11438392]
  58. Brain Res. 1994 Jun 27;649(1-2):95-110 [PMID: 7953659]
  59. Cereb Cortex. 2009 Apr;19(4):849-60 [PMID: 18689859]
  60. Front Syst Neurosci. 2013 Nov 27;7:95 [PMID: 24348346]
  61. Brain Res. 1979 Oct 19;175(2):191-217 [PMID: 314832]
  62. PLoS One. 2009 Sep 04;4(9):e6908 [PMID: 19730738]
  63. Behav Brain Res. 2005 Jul 1;162(1):1-10 [PMID: 15922062]
  64. Exp Physiol. 1993 May;78(3):263-301 [PMID: 8329205]
  65. BMC Neurosci. 2007 Jan 03;8:4 [PMID: 17201924]
  66. Front Cell Neurosci. 2013 Oct 16;7:174 [PMID: 24137110]
  67. J Physiol. 2009 Jul 1;587(Pt 13):3189-205 [PMID: 19433575]
  68. Prog Neurobiol. 2000 Sep;62(1):63-88 [PMID: 10821982]
  69. Sci Rep. 2018 Jan 12;8(1):687 [PMID: 29330488]

MeSH Term

Animals
Dopamine
Dopamine D2 Receptor Antagonists
Mice
Motor Cortex
Neurons
Pyramidal Cells
Receptors, Dopamine D1
Receptors, Dopamine D2

Chemicals

Dopamine D2 Receptor Antagonists
Receptors, Dopamine D1
Receptors, Dopamine D2
Dopamine

Word Cloud

Created with Highcharts 10.0.0dopamineM1excitabilityneuronsmotorantagonisminput/outputfunctionacutechronicdepletionneuronD1RmodulationcortexlocalreceptorcircuitD2Rpropertieslayer-specificeffectschangesshiftssynapticDopaminergicessentialcontrolvoluntarymovementhoweverroleregulatingneuralprimarywellunderstoodinvestigatedtwomodesinfluencestestdirectregulationperformedwhole-cellrecordingsexcitatorymeasuredblockadedeterminedwhetherdopaminergicinputentireviamousemodelParkinson'sdiseasesufficientshiftshowD1alteredsubthresholdsuprathresholdpyramidalfashionprimarilydrivenintrinsicfollowingreliedtransmissioncontrast6-hydroxydopamineinducedtransmission-dependentpartiallyoverlappedresultssuggestmodulatemechanismsengageddistinctdependingdurationoriginmanipulationstudyhighlightsbroadinfluencedemonstratingconsequencesglobalneuronalReducedDopamineSignalingImpactsPyramidalNeuronExcitabilityMouseMotorCortexneurodegeneration

Similar Articles

Cited By (8)