Emergent probability fluxes in confined microbial navigation.

Jan Cammann, Fabian Jan Schwarzendahl, Tanya Ostapenko, Danylo Lavrentovich, Oliver Bäumchen, Marco G Mazza
Author Information
  1. Jan Cammann: Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom. ORCID
  2. Fabian Jan Schwarzendahl: Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
  3. Tanya Ostapenko: Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany. ORCID
  4. Danylo Lavrentovich: Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany. ORCID
  5. Oliver Bäumchen: Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany. ORCID
  6. Marco G Mazza: Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom; m.g.mazza@lboro.ac.uk. ORCID

Abstract

When the motion of a motile cell is observed closely, it appears erratic, and yet the combination of nonequilibrium forces and surfaces can produce striking examples of organization in microbial systems. While most of our current understanding is based on bulk systems or idealized geometries, it remains elusive how and at which length scale self-organization emerges in complex geometries. Here, using experiments and analytical and numerical calculations, we study the motion of motile cells under controlled microfluidic conditions and demonstrate that probability flux loops organize active motion, even at the level of a single cell exploring an isolated compartment of nontrivial geometry. By accounting for the interplay of activity and interfacial forces, we find that the boundary's curvature determines the nonequilibrium probability fluxes of the motion. We theoretically predict a universal relation between fluxes and global geometric properties that is directly confirmed by experiments. Our findings open the possibility to decipher the most probable trajectories of motile cells and may enable the design of geometries guiding their time-averaged motion.

Keywords

References

  1. Lab Chip. 2008 Nov;8(11):1888-95 [PMID: 18941690]
  2. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9733-8 [PMID: 24958878]
  3. Soft Matter. 2014 Aug 14;10(30):5609-17 [PMID: 24965311]
  4. Biol Bull. 2006 Apr;210(2):78-80 [PMID: 16641513]
  5. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9541-5 [PMID: 20457936]
  6. Nat Phys. 2016 Apr;12:341-345 [PMID: 27213004]
  7. Phys Rev Lett. 2018 Feb 9;120(6):068002 [PMID: 29481277]
  8. Soft Matter. 2019 Apr 3;15(14):3027-3035 [PMID: 30887973]
  9. Phys Rev Lett. 2013 Sep 27;111(13):138101 [PMID: 24116818]
  10. Adv Appl Microbiol. 1988;33:107-72 [PMID: 3041739]
  11. Soft Matter. 2017 Jul 26;13(29):5038-5043 [PMID: 28702666]
  12. Phys Rev Lett. 2015 Dec 18;115(25):258102 [PMID: 26722946]
  13. Science. 2016 Apr 29;352(6285):604-7 [PMID: 27126047]
  14. Soft Matter. 2018 Nov 14;14(44):9044-9054 [PMID: 30387799]
  15. Phys Rev Lett. 2012 Dec 14;109(24):248109 [PMID: 23368392]
  16. Science. 2009 Jul 24;325(5939):487-90 [PMID: 19628868]
  17. Phys Rev Lett. 2012 Oct 19;109(16):168105 [PMID: 23215137]
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):010302 [PMID: 24580155]
  19. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1187-92 [PMID: 23297240]
  20. Microbiology (Reading). 2010 Mar;156(Pt 3):609-643 [PMID: 20019082]
  21. Proc Natl Acad Sci U S A. 2021 Sep 28;118(39): [PMID: 34556571]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):050302 [PMID: 26066105]
  23. Proc Natl Acad Sci U S A. 2016 May 17;113(20):E2784-93 [PMID: 27140605]
  24. Phys Rev Lett. 2013 Jun 28;110(26):268102 [PMID: 23848925]
  25. Ecol Lett. 2008 Mar;11(3):296-310 [PMID: 18047587]
  26. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18058-63 [PMID: 24145440]
  27. Soft Matter. 2017 Jan 4;13(2):363-375 [PMID: 27906393]
  28. Nature. 1984 Oct 25-31;311(5988):756-9 [PMID: 6493336]
  29. J R Soc Interface. 2020 Jan;17(162):20190580 [PMID: 31937233]
  30. Science. 2005 Jul 8;309(5732):300-3 [PMID: 16002619]
  31. Plant Cell. 2008 Jun;20(6):1665-77 [PMID: 18552201]
  32. Nat Commun. 2019 Jun 4;10(1):2442 [PMID: 31164651]

MeSH Term

Cell Movement
Chlamydomonas reinhardtii
Hydrodynamics
Mathematical Concepts
Microfluidics

Word Cloud

Created with Highcharts 10.0.0motionprobabilityfluxesmotilenonequilibriummicrobialgeometriescellforcessystemsexperimentscellsactiveobservedcloselyappearserraticyetcombinationsurfacescanproducestrikingexamplesorganizationcurrentunderstandingbasedbulkidealizedremainselusivelengthscaleself-organizationemergescomplexusinganalyticalnumericalcalculationsstudycontrolledmicrofluidicconditionsdemonstratefluxloopsorganizeevenlevelsingleexploringisolatedcompartmentnontrivialgeometryaccountinginterplayactivityinterfacialfindboundary'scurvaturedeterminestheoreticallypredictuniversalrelationglobalgeometricpropertiesdirectlyconfirmedfindingsopenpossibilitydecipherprobabletrajectoriesmayenabledesignguidingtime-averagedEmergentconfinednavigationmattermotilitymicroswimmersstatisticalmechanics

Similar Articles

Cited By