Effect of continuous positive air pressure on cognitive impairment associated with obstructive sleep apnea.

Ting Liu, Ruoyun Ouyang
Author Information
  1. Ting Liu: Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China. tingl.MM@csu.edu.cn.
  2. Ruoyun Ouyang: Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China. ouyangruoyun@csu.edu.cn.

Abstract

Obstructive sleep apnea (OSA) is a kind of sleep-related breathing disorder, involving multiple organs and systems, which can lead to cognitive impairment. At present, the pathophysiological mechanism of cognitive impairment related to OSA is not clear. It is still unknown whether continuous positive airway pressure (CPAP) has therapeutic effect on cognitive impairment in patients with OSA. These patients repeatedly experience intermittent hypoxia and have sleep fragmentation, which results in abnormal brain structure and function, characterizing by extensive cognitive impairment. Appropriate CPAP can correct the abnormal pathophysiological process of OSA patients, restore brain structure and function to a certain extent, and improve cognitive function. Domestic OSA patients have poor acceptance and compliance to CPAP, while the therapeutic effect of CPAP depends on the timing of treatment and compliance, so many patients do not get effective treatment. Systematically expounding the influence of CPAP on the cognitive function of patients with OSA can help clinicians and patients improve their understanding of CPAP treatment and establish a correct concept of early and standardized treatment.

Keywords

References

  1. J Neuroinflammation. 2012 May 11;9:91 [PMID: 22578011]
  2. J Clin Exp Neuropsychol. 2008 Jan;30(1):91-101 [PMID: 17852584]
  3. Oxid Med Cell Longev. 2016;2016:9626831 [PMID: 27774119]
  4. Sleep Breath. 2018 Mar;22(1):165-173 [PMID: 28905231]
  5. Sleep. 2010 Apr;33(4):515-21 [PMID: 20394321]
  6. Sleep. 2014 Sep 01;37(9):1465-75 [PMID: 25142557]
  7. J Clin Exp Neuropsychol. 2017 Sep;39(7):659-669 [PMID: 27845600]
  8. EBioMedicine. 2016 May;7:221-9 [PMID: 27322475]
  9. PLoS One. 2013 Dec 04;8(12):e81584 [PMID: 24324707]
  10. J Sleep Res. 2019 Oct;28(5):e12761 [PMID: 30238529]
  11. Sleep Med Clin. 2016 Sep;11(3):287-98 [PMID: 27542875]
  12. N Engl J Med. 2019 Apr 11;380(15):1442-1449 [PMID: 30970189]
  13. Front Aging Neurosci. 2016 Apr 12;8:78 [PMID: 27148046]
  14. Neurology. 2015 May 12;84(19):1964-71 [PMID: 25878183]
  15. J Clin Sleep Med. 2020 Jun 15;16(6):863-870 [PMID: 32039755]
  16. Sleep Breath. 2021 Mar;25(1):29-40 [PMID: 32447633]
  17. Sleep Med Rev. 2018 Apr;38:39-49 [PMID: 28760549]
  18. Sleep. 2012 Jan 01;35(1):41-8 [PMID: 22215917]
  19. Nurs Res. 2020 Mar/Apr;69(2):157-164 [PMID: 32108738]
  20. Sleep. 2017 May 1;40(5): [PMID: 28329084]
  21. Sleep Med Clin. 2020 Mar;15(1):77-85 [PMID: 32005352]
  22. Behav Sleep Med. 2020 Jan-Feb;18(1):35-57 [PMID: 30453780]
  23. J Am Geriatr Soc. 2019 Mar;67(3):558-564 [PMID: 30724333]
  24. BMC Neurol. 2019 Aug 15;19(1):195 [PMID: 31416438]
  25. J Clin Sleep Med. 2007 Jun 15;3(4):380-6 [PMID: 17694727]
  26. Sleep Med. 2014 Nov;15(11):1319-23 [PMID: 25194581]
  27. Am J Respir Crit Care Med. 2011 May 15;183(10):1419-26 [PMID: 21037021]
  28. Front Neurol. 2021 Feb 26;12:643855 [PMID: 33716946]
  29. Sleep. 2013 Nov 01;36(11):1639-46 [PMID: 24179296]
  30. PLoS One. 2015 Mar 16;10(3):e0119829 [PMID: 25774657]
  31. Clinics (Sao Paulo). 2013 Apr;68(4):449-55 [PMID: 23778335]
  32. Sleep. 2021 Apr 9;44(4): [PMID: 33045082]
  33. Chest. 2015 Nov;148(5):1214-1223 [PMID: 26065720]
  34. Sleep. 2021 Sep 13;44(9): [PMID: 33769542]
  35. Neuroscience. 2010 Sep 29;170(1):247-58 [PMID: 20600652]
  36. J Alzheimers Dis. 2020;75(3):705-715 [PMID: 32310179]
  37. Sleep Breath. 2015 Dec;19(4):1293-9 [PMID: 25827501]
  38. Sleep. 2015 Oct 01;38(10):1537-46 [PMID: 26085297]
  39. Sleep Med. 2018 Sep;49:81-89 [PMID: 30093261]
  40. Behav Brain Res. 2010 Jun 26;210(1):123-6 [PMID: 20122971]
  41. J Clin Invest. 2020 Oct 1;130(10):5042-5051 [PMID: 32730232]
  42. Respir Physiol Neurobiol. 2014 Sep 15;201:31-3 [PMID: 24999279]
  43. Sleep. 2012 Dec 01;35(12):1593-602 [PMID: 23204602]
  44. Front Neurol. 2018 Jun 05;9:426 [PMID: 29922222]
  45. Funct Neurol. 2019 Apr/Jun;34(2):71-78 [PMID: 31556386]
  46. Sleep. 2004 Jun 15;27(4):685-93 [PMID: 15283003]
  47. PLoS One. 2018 Feb 23;13(2):e0192442 [PMID: 29474363]
  48. J Am Geriatr Soc. 2008 Nov;56(11):2076-81 [PMID: 18795985]
  49. Clin Gastroenterol Hepatol. 2015 Feb;13(2):390-397.e1 [PMID: 25158922]
  50. Chin Med J (Engl). 2012 Feb;125(4):696-701 [PMID: 22490498]
  51. Sleep. 2013 Sep 01;36(9):1297-305 [PMID: 23997362]

Grants

  1. 81970086/the National Natural Science Foundation
  2. 2020JJ4802/the Natural Science Foundation of Hunan Province, China

MeSH Term

Air Pressure
Cognitive Dysfunction
Continuous Positive Airway Pressure
Humans
Sleep
Sleep Apnea, Obstructive

Word Cloud

Created with Highcharts 10.0.0cognitivepatientsOSACPAPimpairmentfunctiontreatmentsleepapneacancontinuouspositivepressurepathophysiologicalairwaytherapeuticeffectabnormalbrainstructurecorrectimprovecomplianceobstructiveObstructivekindsleep-relatedbreathingdisorderinvolvingmultipleorganssystemsleadpresentmechanismrelatedclearstillunknownwhetherrepeatedlyexperienceintermittenthypoxiafragmentationresultscharacterizingextensiveAppropriateprocessrestorecertainextentDomesticpooracceptancedependstimingmanygeteffectiveSystematicallyexpoundinginfluencehelpcliniciansunderstandingestablishconceptearlystandardizedEffectairassociated

Similar Articles

Cited By