Prediction Models for Type 2 Diabetes Risk in the General Population: A Systematic Review of Observational Studies.

Samaneh Asgari, Davood Khalili, Farhad Hosseinpanah, Farzad Hadaegh
Author Information
  1. Samaneh Asgari: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  2. Davood Khalili: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  3. Farhad Hosseinpanah: Obesity Research Center, Research Institute for Endocrine Sciences, Shaheed Beheshti University of Medical Sciences, Tehran, Iran. ORCID
  4. Farzad Hadaegh: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

OBJECTIVES: This study aimed to provide an overview of prediction models of undiagnosed type 2 diabetes mellitus (U-T2DM) or the incident T2DM (I-T2DM) using the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) checklist and the prediction model risk of the bias assessment tool (PROBAST).
DATA SOURCES: Both PUBMED and EMBASE databases were searched to guarantee adequate and efficient coverage.
STUDY SELECTION: Articles published between December 2011 and October 2019 were considered.
DATA EXTRACTION: For each article, information on model development requirements, discrimination measures, calibration, overall performance, clinical usefulness, overfitting, and risk of bias (ROB) was reported.
RESULTS: The median (interquartile range; IQR) number of the 46 study populations for model development was 5711 (1971 - 27426) and 2457 (2060 - 6995) individuals for I-T2DM and U-T2DM, respectively. The most common reported predictors were age and body mass index, and only the Qrisk-2017 study included social factors (e.g., Townsend score). Univariable analysis was reported in 46% of the studies, and the variable selection procedure was not clear in 17.4% of them. Moreover, internal and external validation was reported in 43% the studies, while over 63% of them reported calibration. The median (IQR) of AUC for I-T2DM models was 0.78 (0.74 - 0.82); the corresponding value for studies derived before October 2011 was 0.80 (0.77 - 0.83). The highest discrimination index was reported for Qrisk-2017 with C-statistics of 0.89 for women and 0.87 for men. Low ROB for I-T2DM and U-T2DM was assessed at 18% and 41%, respectively.
CONCLUSIONS: Among prediction models, an intermediate to poor quality was reassessed in several aspects of model development and validation. Generally, despite its new risk factors or new methodological aspects, the newly developed model did not increase our capability in screening/predicting T2DM, mainly in the analysis part. It was due to the lack of external validation of the prediction models.

Keywords

References

  1. Diabetes Metab Res Rev. 2016 Sep;32(6):581-8 [PMID: 26663863]
  2. PLoS One. 2014 Jul 16;9(7):e102563 [PMID: 25029368]
  3. Acta Diabetol. 2018 Jan;55(1):13-19 [PMID: 28918462]
  4. PLoS One. 2017 Nov 14;12(11):e0187695 [PMID: 29135987]
  5. Diabetes Care. 2008 Oct;31(10):2056-61 [PMID: 18689695]
  6. Acta Diabetol. 2020 Jan;57(1):63-70 [PMID: 31190268]
  7. Sci Rep. 2017 Feb 17;7:42685 [PMID: 28209984]
  8. Diabetes Technol Ther. 2015 Oct;17(10):693-700 [PMID: 26154413]
  9. Arch Intern Med. 2007 May 28;167(10):1068-74 [PMID: 17533210]
  10. Diabetes Res Clin Pract. 2014 Feb;103(2):319-27 [PMID: 24447808]
  11. Diabetes. 1993 May;42(5):706-14 [PMID: 8482427]
  12. Diabetes Care. 2007 Apr;30(4):854-60 [PMID: 17392546]
  13. Prim Care Diabetes. 2013 Apr;7(1):11-8 [PMID: 23357741]
  14. Diabetes Res Clin Pract. 2017 Sep;131:219-229 [PMID: 28778049]
  15. BMJ. 2011 Nov 28;343:d7163 [PMID: 22123912]
  16. Ann Intern Med. 2019 Jan 1;170(1):51-58 [PMID: 30596875]
  17. Prim Care Diabetes. 2012 Dec;6(4):297-302 [PMID: 22560662]
  18. Environ Health Perspect. 2009 Nov;117(11):1752-9 [PMID: 20049128]
  19. Environ Pollut. 2019 Sep;252(Pt B):1235-1245 [PMID: 31252121]
  20. Diabetes Care. 2012 Aug;35(8):1723-30 [PMID: 22688547]
  21. Nat Rev Endocrinol. 2011 Jun;7(6):346-53 [PMID: 21467970]
  22. J Epidemiol. 2018 Aug 5;28(8):347-352 [PMID: 29553059]
  23. J Clin Endocrinol Metab. 2000 Sep;85(9):3101-8 [PMID: 10999793]
  24. Diabetes Care. 2005 Aug;28(8):2013-8 [PMID: 16043747]
  25. Endocr Rev. 2016 Jun;37(3):278-316 [PMID: 27159875]
  26. BMJ. 2009 Mar 17;338:b880 [PMID: 19297312]
  27. Diabetes Metab. 2015 Apr;41(2):107-15 [PMID: 25454091]
  28. Diabet Med. 2011 Jan;28(1):23-30 [PMID: 21166842]
  29. J Diabetes Investig. 2015 Nov;6(6):670-7 [PMID: 26543541]
  30. BMJ. 2016 May 16;353:i2416 [PMID: 27184143]
  31. BMC Endocr Disord. 2016 Jul 25;16(1):42 [PMID: 27456082]
  32. BMC Endocr Disord. 2019 Apr 28;19(1):41 [PMID: 31030672]
  33. AMIA Jt Summits Transl Sci Proc. 2015 Mar 25;2015:132-6 [PMID: 26306255]
  34. Ethn Health. 2012;17(4):419-37 [PMID: 22292745]
  35. Diabetes Care. 1999 Feb;22(2):213-9 [PMID: 10333936]
  36. Diabetes Res Clin Pract. 2019 Nov;157:107843 [PMID: 31518657]
  37. Metabolism. 2005 Jun;54(6):800-8 [PMID: 15931618]
  38. Expert Rev Cardiovasc Ther. 2008 Mar;6(3):315-22 [PMID: 18327993]
  39. Medicine (Baltimore). 2016 Oct;95(40):e5057 [PMID: 27749572]
  40. Diabet Med. 2018 May;35(5):640-649 [PMID: 29460977]
  41. BMJ Open Diabetes Res Care. 2018 Mar 29;6(1):e000489 [PMID: 29629178]
  42. PLoS One. 2014 May 12;9(5):e97042 [PMID: 24819157]
  43. Diabetes Res Clin Pract. 2018 Apr;138:271-281 [PMID: 29496507]
  44. Med J Aust. 2010 Feb 15;192(4):197-202 [PMID: 20170456]
  45. BMC Public Health. 2012 May 30;12:392 [PMID: 22646095]
  46. Health Serv Res. 2016 Oct;51(5):1896-918 [PMID: 26898782]
  47. Ann Intern Med. 2009 Jun 2;150(11):741-51 [PMID: 19487709]
  48. Ann Intern Med. 2015 Jan 6;162(1):W1-73 [PMID: 25560730]
  49. Prim Care Diabetes. 2017 Feb;11(1):86-93 [PMID: 27727004]
  50. Diabetes Res Clin Pract. 2017 Jun;128:40-50 [PMID: 28437734]
  51. Ann Fam Med. 2005 Jan-Feb;3(1):60-3 [PMID: 15671192]
  52. PLoS One. 2015 Nov 11;10(11):e0142779 [PMID: 26558900]
  53. Acta Diabetol. 2015 Feb;52(1):91-101 [PMID: 24996544]
  54. Clin Diabetes. 2018 Jan;36(1):14-37 [PMID: 29382975]
  55. Endocrinol Diabetes Nutr (Engl Ed). 2018 Dec;65(10):603-610 [PMID: 29945768]
  56. Diabetes Metab Syndr Obes. 2014 Sep 16;7:409-20 [PMID: 25258546]
  57. PLoS Med. 2014 Oct 14;11(10):e1001744 [PMID: 25314315]
  58. Nat Rev Endocrinol. 2017 Sep;13(9):547-560 [PMID: 28664919]
  59. J Endocrinol Invest. 2017 Oct;40(10):1115-1123 [PMID: 28474301]
  60. BMJ. 2017 Nov 20;359:j5019 [PMID: 29158232]
  61. Diabetes Care. 2012 Nov;35(11):2286-92 [PMID: 22912425]
  62. Diabet Med. 2012 Jan;29(1):107-14 [PMID: 21718358]
  63. Diabetes Care. 2005 Feb;28(2):404-8 [PMID: 15677800]
  64. PLoS One. 2019 Oct 9;14(10):e0218933 [PMID: 31596852]
  65. Diagn Progn Res. 2019 Aug 22;3:16 [PMID: 31463368]
  66. Ann Intern Med. 2018 Oct 2;169(7):467-473 [PMID: 30178033]
  67. Diabet Med. 2013 Apr;30(4):443-51 [PMID: 23331167]
  68. J Clin Endocrinol Metab. 2013 Mar;98(3):1051-60 [PMID: 23393174]
  69. J Diabetes Res. 2016;2016:8790235 [PMID: 27689096]
  70. PLoS One. 2016 Apr 12;11(4):e0152054 [PMID: 27070555]
  71. Diabetes Care. 2007 Mar;30(3):510-5 [PMID: 17327313]
  72. Eur J Public Health. 2019 Feb 1;29(1):178-182 [PMID: 29897477]
  73. Diabetes Care. 2003 Mar;26(3):725-31 [PMID: 12610029]
  74. Diabetologia. 2012 Dec;55(12):3213-23 [PMID: 22955996]
  75. BMC Public Health. 2015 Sep 22;15:938 [PMID: 26395572]
  76. Sci Rep. 2016 May 25;6:26548 [PMID: 27221651]
  77. Noise Health. 2015 Jan-Feb;17(74):23-33 [PMID: 25599755]
  78. Diabetes Care. 2008 Jul;31(7):1416-21 [PMID: 18356403]
  79. Diabetes Metab Res Rev. 2017 Oct;33(7): [PMID: 28608942]
  80. J Diabetes Investig. 2018 Sep;9(5):1052-1059 [PMID: 29380553]
  81. Diabetes Metab J. 2018 Oct;42(5):402-414 [PMID: 30113144]
  82. Prev Med. 2019 Feb;119:145-152 [PMID: 30594538]
  83. Circ J. 2012;76(8):1904-10 [PMID: 22640983]
  84. Acta Diabetol. 2012 Apr;49(2):145-51 [PMID: 21698484]
  85. J Epidemiol Community Health. 2011 Jul;65(7):613-20 [PMID: 20515896]
  86. EBioMedicine. 2018 Sep;35:307-316 [PMID: 30115607]
  87. BMC Med. 2011 Sep 08;9:103 [PMID: 21902820]
  88. Ther Adv Chronic Dis. 2014 Nov;5(6):234-44 [PMID: 25364491]
  89. Endocr J. 2016 Sep 30;63(9):857-865 [PMID: 27523099]
  90. Diabetologia. 2011 May;54(5):994-5 [PMID: 21380593]
  91. Stat Med. 2000 Jan 15;19(1):113-32 [PMID: 10623917]
  92. PLoS One. 2017 Nov 2;12(11):e0186172 [PMID: 29095851]

Word Cloud

Created with Highcharts 10.0.00modelreportedpredictionmodelsI-T2DM-study2U-T2DMriskdevelopmentstudiesvalidationT2DMTRIPODbiasPROBASTDATA2011OctoberdiscriminationcalibrationROBmedianIQRrespectivelyindexQrisk-2017factorsanalysisexternalaspectsnewPredictionModelsTypeDiabetesSystematicReviewOBJECTIVES:aimedprovideoverviewundiagnosedtypediabetesmellitusincidentusingtransparentreportingmultivariableindividualprognosisdiagnosischecklistassessmenttoolSOURCES:PUBMEDEMBASEdatabasessearchedguaranteeadequateefficientcoverageSTUDYSELECTION:ArticlespublishedDecember2019consideredEXTRACTION:articleinformationrequirementsmeasuresoverallperformanceclinicalusefulnessoverfittingRESULTS:interquartilerangenumber46populations5711197127426245720606995individualscommonpredictorsagebodymassincludedsocialegTownsendscoreUnivariable46%variableselectionprocedureclear174%Moreoverinternal43%63%AUC787482correspondingvaluederived807783highestC-statistics89women87menLowassessed18%41%CONCLUSIONS:AmongintermediatepoorqualityreassessedseveralGenerallydespitemethodologicalnewlydevelopedincreasecapabilityscreening/predictingmainlypartduelackRiskGeneralPopulation:ObservationalStudies

Similar Articles

Cited By