An aptamer-based shear horizontal surface acoustic wave biosensor with a CVD-grown single-layered graphene film for high-sensitivity detection of a label-free endotoxin.

Junwang Ji, Yiquan Pang, Dongxiao Li, Zheng Huang, Zuwei Zhang, Ning Xue, Yi Xu, Xiaojing Mu
Author Information
  1. Junwang Ji: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China.
  2. Yiquan Pang: School of Chemistry and Chemical Engineering, Chongqing University, 400030 Chongqing, China.
  3. Dongxiao Li: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China.
  4. Zheng Huang: Department of Applied Physics, Chongqing University, 401331 Chongqing, China.
  5. Zuwei Zhang: Chongqing Acoustic-Optic-Electric Corporation, China Electronic Technology Group Corporation, 400060 Chongqing, China.
  6. Ning Xue: Institute of Electronics, Chinese Academy of Sciences, 100190 Beijing, China.
  7. Yi Xu: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China.
  8. Xiaojing Mu: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China.

Abstract

The thickness of the sensitive layer has an important influence on the sensitivity of a shear horizontal surface acoustic wave (SH-SAW) biosensor with a delay-line structure and lower layer numbers of graphene produce better sensitivity for biological detection. Therefore, a label-free and highly sensitive SH-SAW biosensor with chemical vapor deposition (CVD-)-grown single-layered graphene (SLG) for endotoxin detection was developed in this study. With this methodology, SH-SAW biosensors were fabricated on a 36° Y-90° X quartz substrate with a base frequency of 246.2 MHz, and an effective detection cell was fabricated using acrylic material. To increase the surface hydrophilicity, chitosan was applied to the surface of the SLG film. Additionally, the aptamer was immobilized on the surface of the SLG film by cross-linking with glutaraldehyde. Finally, the sensitivity was verified by endotoxin detection with a linear detection ranging from 0 to 100 ng/mL, and the detection limit (LOD) was as low as 3.53 ng/mL. In addition, the stability of this type of SH-SAW biosensor from the air phase to the liquid phase proved to be excellent and the specificity was tested and verified by detecting the endotoxin obtained from Escherichia coli (E. coli), the endotoxin obtained from Pseudomonas aeruginosa (P. aeruginosa), and aflatoxin. Therefore, this type of SH-SAW biosensor with a CVD-grown SLG film may offer a promising approach to endotoxin detection, and it may have great potential in clinical applications.

Keywords

References

  1. Nanoscale. 2014 Mar 7;6(5):2902-8 [PMID: 24477782]
  2. Biosens Bioelectron. 2014 Oct 15;60:318-24 [PMID: 24836014]
  3. Innate Immun. 2010 Feb;16(1):39-47 [PMID: 19567486]
  4. J Mater Chem B. 2018 Aug 21;6(31):5181-5187 [PMID: 32254545]
  5. ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16953-9 [PMID: 26203889]
  6. Crit Rev Biotechnol. 2017 Mar;37(2):251-261 [PMID: 26863480]
  7. ACS Omega. 2017 Jun 30;2(6):2469-2473 [PMID: 30023666]
  8. Innate Immun. 2013;19(4):388-97 [PMID: 23165992]
  9. Adv Healthc Mater. 2013 Feb;2(2):271-4 [PMID: 23184414]
  10. Langmuir. 2018 Jun 26;34(25):7396-7403 [PMID: 29806945]
  11. Biosens Bioelectron. 2018 Nov 15;119:191-203 [PMID: 30125881]
  12. Sci Rep. 2017 Sep 20;7(1):11971 [PMID: 28931860]
  13. Nanoscale. 2012 Jun 7;4(11):3515-22 [PMID: 22535381]
  14. Biosens Bioelectron. 2012 Feb 15;32(1):32-6 [PMID: 22182428]
  15. Top Curr Chem. 2014;348:237-65 [PMID: 23756846]
  16. Biosens Bioelectron. 2017 Jul 15;93:146-154 [PMID: 27660016]
  17. Anal Chim Acta. 2016 Nov 2;943:98-105 [PMID: 27769383]
  18. Biosens Bioelectron. 2014 Jan 15;51:62-75 [PMID: 23934306]
  19. ACS Sens. 2018 Apr 27;3(4):792-798 [PMID: 29569900]
  20. Biosens Bioelectron. 2003 Oct 1;18(11):1399-406 [PMID: 12896842]
  21. ACS Appl Mater Interfaces. 2018 Jul 18;10(28):23501-23508 [PMID: 29985579]
  22. Sensors (Basel). 2017 Oct 26;17(11): [PMID: 29072590]
  23. Biosens Bioelectron. 2018 Nov 30;120:85-92 [PMID: 30170248]
  24. J Inflamm (Lond). 2013 Mar 06;10(1):8 [PMID: 23510603]
  25. Biosens Bioelectron. 2017 Nov 15;97:377-383 [PMID: 28624620]
  26. Talanta. 2010 Sep 15;82(4):1344-8 [PMID: 20801339]
  27. Innate Immun. 2012 Apr;18(2):343-9 [PMID: 21844129]
  28. J Am Chem Soc. 2011 Jun 29;133(25):9720-3 [PMID: 21615123]
  29. Chem Commun (Camb). 2015 Oct 21;51(82):15137-40 [PMID: 26323568]
  30. Biosens Bioelectron. 2018 Jan 15;99:85-91 [PMID: 28743083]
  31. Chem Soc Rev. 2010 Jan;39(1):228-40 [PMID: 20023850]
  32. Biosens Bioelectron. 2010 Jul 15;25(11):2470-6 [PMID: 20434900]
  33. Bioelectrochemistry. 2018 Aug;122:174-182 [PMID: 29656242]
  34. Anal Biochem. 2018 May 1;548:96-101 [PMID: 29501578]
  35. Sensors (Basel). 2015 Jun 11;15(6):13839-50 [PMID: 26110408]
  36. Sensors (Basel). 2017 Sep 21;17(10): [PMID: 28934118]

Word Cloud

Created with Highcharts 10.0.0detectionendotoxinsurfaceSH-SAWbiosensorSLGfilmsensitivitygraphenesensitivelayershearhorizontalacousticwaveThereforelabel-freesingle-layeredfabricatedverifiedtypephaseobtainedcoliaeruginosaCVD-grownmaythicknessimportantinfluencedelay-linestructurelowernumbersproducebetterbiologicalhighlychemicalvapordepositionCVD--growndevelopedstudymethodologybiosensors36°Y-90°Xquartzsubstratebasefrequency2462 MHzeffectivecellusingacrylicmaterialincreasehydrophilicitychitosanappliedAdditionallyaptamerimmobilizedcross-linkingglutaraldehydeFinallylinearranging0100 ng/mLlimitLODlow353 ng/mLadditionstabilityairliquidprovedexcellentspecificitytesteddetectingEscherichiaEPseudomonasPaflatoxinofferpromisingapproachgreatpotentialclinicalapplicationsaptamer-basedhigh-sensitivityElectronicpropertiesmaterialsNanobiotechnology

Similar Articles

Cited By (13)