Neutrophil Extracellular Trap-Driven Occlusive Diseases.

Kursat Oguz Yaykasli, Christine Schauer, Luis E Muñoz, Aparna Mahajan, Jasmin Knopf, Georg Schett, Martin Herrmann
Author Information
  1. Kursat Oguz Yaykasli: Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany. ORCID
  2. Christine Schauer: Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
  3. Luis E Muñoz: Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany. ORCID
  4. Aparna Mahajan: Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
  5. Jasmin Knopf: Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany. ORCID
  6. Georg Schett: Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
  7. Martin Herrmann: Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany. ORCID

Abstract

The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.

Keywords

References

  1. Laryngoscope. 2020 Jan;130(1):69-74 [PMID: 30861582]
  2. BMC Gastroenterol. 2018 Jan 25;18(1):18 [PMID: 29370777]
  3. Ocul Immunol Inflamm. 2021 May 19;29(4):803-810 [PMID: 33945389]
  4. J Leukoc Biol. 2019 Dec;106(6):1359-1366 [PMID: 31478257]
  5. Semin Arthritis Rheum. 2019 Dec;49(3S):S43-S48 [PMID: 31779852]
  6. Acta Otorhinolaryngol Ital. 2017 Apr;37(2):83-93 [PMID: 28516970]
  7. Nat Commun. 2016 Mar 11;7:10973 [PMID: 26964500]
  8. Cytokine. 2020 Mar;127:154933 [PMID: 31778959]
  9. Lupus Sci Med. 2016 Apr 27;3(1):e000134 [PMID: 27158525]
  10. Neuroimaging Clin N Am. 2018 May;28(2):255-272 [PMID: 29622118]
  11. Arch Esp Urol. 2017 Jan;70(1):12-27 [PMID: 28221139]
  12. Int J Mol Sci. 2021 Apr 17;22(8): [PMID: 33920656]
  13. Arch Dermatol Res. 2022 Aug;314(6):515-525 [PMID: 34165603]
  14. Arthritis Rheumatol. 2022 Jul;74(7):1132-1138 [PMID: 35174669]
  15. Nat Rev Immunol. 2013 Jan;13(1):34-45 [PMID: 23222502]
  16. Molecules. 2021 Feb 24;26(5): [PMID: 33668185]
  17. FASEB J. 2018 Jun 20;:fj201800691R [PMID: 29924943]
  18. Front Immunol. 2018 Oct 02;9:2266 [PMID: 30333831]
  19. Thromb Haemost. 2019 Apr;119(4):586-593 [PMID: 30722079]
  20. Transl Androl Urol. 2021 Jan;10(1):77-86 [PMID: 33532298]
  21. Gastroenterology. 2015 Dec;149(7):1920-1931.e8 [PMID: 26302488]
  22. Blood. 2011 Jan 20;117(3):953-9 [PMID: 20974672]
  23. Science. 2017 Dec 1;358(6367):1202-1206 [PMID: 29191910]
  24. J Exp Med. 2020 Dec 7;217(12): [PMID: 32926097]
  25. Otolaryngol Head Neck Surg. 2016 Mar;154(3):449-53 [PMID: 26759424]
  26. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  27. EBioMedicine. 2016 Feb 06;5:175-82 [PMID: 27077125]
  28. Stroke. 2019 Nov;50(11):3228-3237 [PMID: 31526124]
  29. Immunity. 2019 Sep 17;51(3):413-414 [PMID: 31533050]
  30. Front Immunol. 2017 Jul 28;8:874 [PMID: 28804484]
  31. Urolithiasis. 2015 Jan;43 Suppl 1:5-11 [PMID: 25098906]
  32. PLoS One. 2019 Dec 23;14(12):e0226583 [PMID: 31869367]
  33. Front Immunol. 2020 Dec 09;11:571489 [PMID: 33362760]
  34. Cells. 2020 Jun 19;9(6): [PMID: 32575367]
  35. PLoS One. 2015 Apr 09;10(4):e0124082 [PMID: 25856628]
  36. Circ Res. 2019 Aug 16;125(5):507-519 [PMID: 31248335]
  37. J Leukoc Biol. 2019 Jun;105(6):1087-1098 [PMID: 30977943]
  38. Kidney Int Rep. 2020 Feb 20;5(5):663-677 [PMID: 32405588]
  39. Front Immunol. 2021 Jan 19;11:582895 [PMID: 33574811]
  40. Front Immunol. 2016 Dec 01;7:557 [PMID: 27990145]
  41. J Exp Med. 2020 Dec 7;217(12): [PMID: 32926098]
  42. Int J Mol Sci. 2020 Oct 07;21(19): [PMID: 33036337]
  43. Circ Res. 2020 Apr 10;126(8):e37-e52 [PMID: 32089086]
  44. Ann Neurol. 2017 Aug;82(2):223-232 [PMID: 28696508]
  45. Blood. 2016 Nov 17;128(20):2435-2449 [PMID: 27574188]
  46. Haematologica. 2013 Nov;98(11):1797-803 [PMID: 23911704]
  47. J Leukoc Biol. 2021 Feb;109(2):349-362 [PMID: 32531826]
  48. Curr Opin Nephrol Hypertens. 2018 Jul;27(4):236-242 [PMID: 29697409]
  49. Science. 2004 Mar 5;303(5663):1532-5 [PMID: 15001782]
  50. Cells. 2019 Aug 27;8(9): [PMID: 31461831]
  51. Acta Neuropathol. 2015 Feb;129(2):239-57 [PMID: 25548073]
  52. Oral Dis. 2021 Oct;27(7):1711-1719 [PMID: 33140898]
  53. Endosc Int Open. 2020 Aug;8(8):E1070-E1085 [PMID: 32743061]
  54. J Pharmacol Exp Ther. 2015 May;353(2):288-98 [PMID: 25698787]
  55. Thromb Res. 2018 Oct;170:87-96 [PMID: 30138777]
  56. Circ Res. 2018 Jun 22;123(1):33-42 [PMID: 29572206]
  57. J Clin Invest. 2020 Nov 2;130(11):6151-6157 [PMID: 32759504]
  58. J Periodontal Res. 2021 Aug;56(4):633-645 [PMID: 33710624]
  59. Blood. 2019 May 16;133(20):2186-2197 [PMID: 30898858]
  60. Cells. 2020 Sep 22;9(9): [PMID: 32971767]
  61. Circ Res. 2015 Mar 27;116(7):1182-92 [PMID: 25547404]
  62. Med Oral Patol Oral Cir Bucal. 2018 Sep 1;23(5):e540-e544 [PMID: 30148468]
  63. Am J Pathol. 1996 Sep;149(3):911-21 [PMID: 8780395]
  64. Virus Res. 2018 Jun 2;251:68-77 [PMID: 29621602]
  65. Blood. 2021 Jul 8;138(1):91-103 [PMID: 33881503]
  66. Ophthalmology. 2017 Nov;124(11S):S20-S26 [PMID: 29055358]
  67. Sci Rep. 2018 Feb 15;8(1):3101 [PMID: 29449599]
  68. Nat Rev Nephrol. 2019 Sep;15(9):559-575 [PMID: 31213698]
  69. J Surg Case Rep. 2021 Apr 30;2021(4):rjab024 [PMID: 33959249]
  70. Circ Res. 2014 Mar 14;114(6):947-56 [PMID: 24425713]
  71. Eur Heart J. 2016 May 14;37(19):1538-49 [PMID: 26761950]
  72. Asia Pac Allergy. 2019 Oct 14;9(4):e32 [PMID: 31720243]
  73. Neurosci Lett. 2020 Nov 1;738:135383 [PMID: 32937190]
  74. Biomolecules. 2019 Aug 14;9(8): [PMID: 31416173]
  75. J Cell Physiol. 2019 Jul;234(7):11850-11860 [PMID: 30515825]
  76. HPB (Oxford). 2020 Aug;22(8):1092-1101 [PMID: 32471694]
  77. mBio. 2021 Feb 16;12(1): [PMID: 33593982]
  78. Sci Rep. 2019 Aug 12;9(1):11599 [PMID: 31406121]
  79. Mediators Inflamm. 2020 Dec 29;2020:1724206 [PMID: 33456369]
  80. Cell Death Differ. 2021 Nov;28(11):3125-3139 [PMID: 34031543]
  81. Nat Med. 2014 May;20(5):511-7 [PMID: 24784231]
  82. J Thromb Thrombolysis. 2022 Jan;53(1):83-87 [PMID: 33982161]
  83. Adv Urol. 2018 Feb 4;2018:3068365 [PMID: 29515627]
  84. Eur Heart J. 2015 Jun 7;36(22):1405-14 [PMID: 25660055]
  85. Front Immunol. 2020 Mar 13;11:454 [PMID: 32231672]
  86. Haematologica. 2021 Jun 01;106(6):1636-1646 [PMID: 32586906]
  87. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5856-E5865 [PMID: 27647892]
  88. Immunity. 2019 Sep 17;51(3):443-450.e4 [PMID: 31422870]
  89. Front Cell Infect Microbiol. 2021 Mar 18;11:639144 [PMID: 33816343]
  90. Front Immunol. 2016 Dec 09;7:583 [PMID: 28018350]
  91. Sci Rep. 2017 Nov 3;7(1):15003 [PMID: 29101355]
  92. Front Immunol. 2019 Apr 17;10:844 [PMID: 31057557]
  93. Thromb Res. 2014 May;133 Suppl 1:S35-7 [PMID: 24759139]
  94. JAMA Cardiol. 2020 Dec 29;: [PMID: 33372956]
  95. Surv Ophthalmol. 2020 Mar - Apr;65(2):205-217 [PMID: 31494111]
  96. Clin Hemorheol Microcirc. 2018;68(2-3):251-262 [PMID: 29614636]
  97. Clin Immunol. 2020 Feb;211:108324 [PMID: 31843567]
  98. Arch Otolaryngol Head Neck Surg. 2001 Jan;127(1):66-8 [PMID: 11177017]
  99. Sci Immunol. 2019 Oct 18;4(40): [PMID: 31628160]
  100. Semin Thromb Hemost. 2020 Sep;46(6):724-734 [PMID: 32906176]
  101. Annu Rev Cell Dev Biol. 2020 Oct 6;36:191-218 [PMID: 32663035]
  102. Nature. 1997 Nov 27;390(6658):350-1 [PMID: 9389474]
  103. J Thromb Haemost. 2015 Jun;13 Suppl 1:S82-91 [PMID: 26149054]
  104. Arterioscler Thromb Vasc Biol. 2019 Sep;39(9):1724-1738 [PMID: 31315434]
  105. EBioMedicine. 2020 Aug;58:102925 [PMID: 32745993]
  106. Front Pharmacol. 2021 May 04;12:666732 [PMID: 34017259]
  107. Thromb Haemost. 2013 Feb;109(2):290-7 [PMID: 23238559]
  108. Res Pract Thromb Haemost. 2020 Dec 16;5(1):204-210 [PMID: 33537545]
  109. Sci Rep. 2018 Sep 21;8(1):14166 [PMID: 30242250]
  110. Cells. 2020 Dec 05;9(12): [PMID: 33291407]
  111. Ocul Surf. 2021 Apr;20:1-12 [PMID: 33401018]
  112. J Exp Med. 2020 Jun 1;217(6): [PMID: 32302401]
  113. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15880-5 [PMID: 20798043]
  114. Cardiovasc Res. 2018 Jul 1;114(8):1178-1188 [PMID: 29444200]
  115. Dent Clin North Am. 2020 Jan;64(1):87-104 [PMID: 31735235]
  116. Best Pract Res Clin Gastroenterol. 2006;20(6):981-96 [PMID: 17127183]
  117. Thromb Haemost. 2009 Sep;102(3):564-72 [PMID: 19718478]
  118. Thorax. 2018 Jun;73(6):578-580 [PMID: 28780505]
  119. EBioMedicine. 2020 Mar;53:102671 [PMID: 32114386]
  120. Front Med (Lausanne). 2021 Mar 22;8:614829 [PMID: 33829021]
  121. FASEB J. 2019 Jan;33(1):1401-1414 [PMID: 30130433]
  122. J Pathol. 2016 Feb;238(3):401-11 [PMID: 26468056]
  123. Virchows Arch A Pathol Anat Histopathol. 1993;423(1):29-32 [PMID: 8212531]

Grants

  1. SCHA 2040/1-1/Deutsche Forschungsgemeinschaft
  2. 97744-1/Volkswagen Foundation

MeSH Term

Animals
Body Fluids
Embolism
Extracellular Traps
Humans
Inflammation
Neutrophils
Prospective Studies
Thrombosis

Word Cloud

Created with Highcharts 10.0.0NETsocclusionsformationsystemalsoductsglandsneutrophilextracellulartrapsnewpathologiesvariousdiseaseseffectsincludevesselsenlightenmentpartinnateimmuneshedinsightsinitialideapivotaldefensestructuregraduallyamendeddueseveraldeleteriousconsecutiveinvestigationsnowconsidereddouble-edgedswordharmfullimitedinductioninflammationremnantscausedaggregatedaggNETslattercarriesriskoccludingtubularstructureslikeappearassociatedadditionlife-threateningvascularcloggingpainfulstonebiliarykidneysprostateappendixAggNETsproneoccludeductalexocrineseenocularsalivaryothersLastleastclogpancreaticmurinemodelneutrophiliaregardelucidatingmechanismNETs-dependentcrucialimportancedevelopmenttherapeuticapproachesThereforepurposereviewaddressputativemechanismsNETs-associatedpathogenesisdiseasewellprospectivetreatmentmodalitiesNeutrophilExtracellularTrap-DrivenOcclusiveDiseasesaggregation

Similar Articles

Cited By