Complement Component C1q as a Potential Diagnostic Tool for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Subtyping.

Jesús Castro-Marrero, Mario Zacares, Eloy Almenar-Pérez, José Alegre-Martín, Elisa Oltra
Author Information
  1. Jesús Castro-Marrero: ME/CFS Research Unit, Division of Rheumatology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain. ORCID
  2. Mario Zacares: Departamento de Ciencias Básicas y Transversales, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
  3. Eloy Almenar-Pérez: Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
  4. José Alegre-Martín: ME/CFS Clinical Unit, Division of Rheumatology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain. ORCID
  5. Elisa Oltra: Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain. ORCID

Abstract

BACKGROUND: Routine blood analytics are systematically used in the clinic to diagnose disease or confirm individuals' healthy status. For myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a disease relying exclusively on clinical symptoms for its diagnosis, blood analytics only serve to rule out underlying conditions leading to exerting fatigue. However, studies evaluating complete and large blood datasets by combinatorial approaches to evidence ME/CFS condition or detect/identify case subgroups are still scarce.
METHODS: This study used unbiased hierarchical cluster analysis of a large cohort of 250 carefully phenotyped female ME/CFS cases toward exploring this possibility.
RESULTS: The results show three symptom-based clusters, classified as severe, moderate, and mild, presenting significant differences ( < 0.05) in five blood parameters. Unexpectedly the study also revealed high levels of circulating complement factor C1q in 107/250 (43%) of the participants, placing C1q as a key molecule to identify an ME/CFS subtype/subgroup with more apparent pain symptoms.
CONCLUSIONS: The results obtained have important implications for the research of ME/CFS etiology and, most likely, for the implementation of future diagnosis methods and treatments of ME/CFS in the clinic.

Keywords

References

  1. Biomedicines. 2021 Feb 09;9(2): [PMID: 33572397]
  2. Front Immunol. 2012 Jan 06;2:92 [PMID: 22566881]
  3. Metabolism. 2019 Mar;92:6-10 [PMID: 30253139]
  4. Biochim Biophys Acta. 2008 Sep;1784(9):1271-6 [PMID: 18513495]
  5. Clin Infect Dis. 1994 Jan;18 Suppl 1:S79-83 [PMID: 8148458]
  6. J Clin Endocrinol Metab. 2011 Jul;96(7):1911-30 [PMID: 21646368]
  7. Mol Immunol. 2004 Jan;40(10):709-16 [PMID: 14644096]
  8. Mol Neurobiol. 2017 Aug;54(6):4271-4291 [PMID: 27339878]
  9. Sci Rep. 2020 Nov 16;10(1):19933 [PMID: 33199820]
  10. Clin Exp Rheumatol. 2004 Sep-Oct;22(5):554-60 [PMID: 15485007]
  11. Clin Rev Allergy Immunol. 2020 Apr;58(2):229-251 [PMID: 31834594]
  12. Biochem Med (Zagreb). 2020 Jun 15;30(2):020501 [PMID: 32550812]
  13. Nutrients. 2020 Feb 24;12(2): [PMID: 32102427]
  14. Nat Neurosci. 2013 Dec;16(12):1773-82 [PMID: 24162655]
  15. Aging Dis. 2019 Jun 01;10(3):652-663 [PMID: 31165008]
  16. J Rheumatol. 1991 May;18(5):728-33 [PMID: 1865419]
  17. Biochem Med (Zagreb). 2017 Oct 15;27(3):030501 [PMID: 28900363]
  18. Diagnostics (Basel). 2020 Feb 08;10(2): [PMID: 32046358]
  19. Front Immunol. 2015 May 26;6:257 [PMID: 26074922]
  20. J Clin Endocrinol Metab. 2011 Jan;96(1):53-8 [PMID: 21118827]
  21. Psychiatry Res. 1989 May;28(2):193-213 [PMID: 2748771]
  22. Elife. 2020 Sep 14;9: [PMID: 32924936]
  23. Mol Neurobiol. 2014 Apr;49(2):741-56 [PMID: 24068616]
  24. Front Immunol. 2015 Jun 02;6:262 [PMID: 26082779]
  25. J Neurosci Res. 2009 Feb 15;87(3):644-52 [PMID: 18831010]
  26. Ann Intern Med. 1994 Dec 15;121(12):953-9 [PMID: 7978722]
  27. J Clin Med. 2020 Aug 05;9(8): [PMID: 32764516]
  28. BMJ Open. 2018 Sep 4;8(9):e020817 [PMID: 30181183]
  29. FEBS Lett. 2008 Sep 3;582(20):3111-6 [PMID: 18703056]
  30. JAMA. 2015 Mar 17;313(11):1101-2 [PMID: 25668027]
  31. Med Clin (Barc). 1995 May 27;104(20):771-6 [PMID: 7783470]
  32. Diagnostics (Basel). 2019 Apr 10;9(2): [PMID: 30974900]
  33. J Intern Med. 2011 Oct;270(4):327-38 [PMID: 21777306]
  34. Sci Rep. 2020 Feb 7;10(1):2064 [PMID: 32034172]
  35. Mayo Clin Proc. 2012 Dec;87(12):1196-201 [PMID: 23218087]
  36. Clin Transl Immunology. 2021 Apr 29;10(4):e1279 [PMID: 33968409]
  37. Front Immunol. 2015 Jun 29;6:317 [PMID: 26175731]
  38. Pain Rep. 2021 Jan 21;6(1):e784 [PMID: 33521482]
  39. Elife. 2020 Sep 07;9: [PMID: 32894219]

Grants

  1. UCV 2020-270-001/Universidad Católica de Valencia San Vicente Mártir

Word Cloud

Created with Highcharts 10.0.0ME/CFSbloodC1qanalyticsfatiguesymptomsdiagnosisusedclinicdiseasemyalgicsyndromelargestudyclusteranalysisresultscomplementBACKGROUND:Routinesystematicallydiagnoseconfirmindividuals'healthystatusencephalomyelitis/chronicrelyingexclusivelyclinicalserveruleunderlyingconditionsleadingexertingHoweverstudiesevaluatingcompletedatasetscombinatorialapproachesevidenceconditiondetect/identifycasesubgroupsstillscarceMETHODS:unbiasedhierarchicalcohort250carefullyphenotypedfemalecasestowardexploringpossibilityRESULTS:showthreesymptom-basedclustersclassifiedseveremoderatemildpresentingsignificantdifferences<005fiveparametersUnexpectedlyalsorevealedhighlevelscirculatingfactor107/25043%participantsplacingkeymoleculeidentifysubtype/subgroupapparentpainCONCLUSIONS:obtainedimportantimplicationsresearchetiologylikelyimplementationfuturemethodstreatmentsComplementComponentPotentialDiagnosticToolMyalgicEncephalomyelitis/ChronicFatigueSyndromeSubtypingchronicsystemencephalomyelitis

Similar Articles

Cited By (7)