Gut Bacterial Communities of and Their Associations with Host Development and Diet.

Qiuyu Ma, Yonghong Cui, Xu Chu, Guoqiang Li, Meijiao Yang, Rong Wang, Guanghong Liang, Songqing Wu, Mulualem Tigabu, Feiping Zhang, Xia Hu
Author Information
  1. Qiuyu Ma: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  2. Yonghong Cui: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  3. Xu Chu: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  4. Guoqiang Li: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  5. Meijiao Yang: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  6. Rong Wang: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China. ORCID
  7. Guanghong Liang: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  8. Songqing Wu: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  9. Mulualem Tigabu: Southern Swedish Forest Research Center, Faculty of Forest Science, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden. ORCID
  10. Feiping Zhang: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
  11. Xia Hu: International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China.

Abstract

The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in mutualistic symbionts. and were dominant in/on eggs. In the first instar larvae, accounted for 33.52% of the sterilized artificial diet treatment, while (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on and might provide new possibilities for improving the control of these bacteria.

Keywords

References

  1. Life (Basel). 2020 Oct 25;10(11): [PMID: 33113860]
  2. PLoS One. 2016 May 03;11(5):e0154514 [PMID: 27139886]
  3. Appl Biochem Biotechnol. 2017 Jan;181(1):32-47 [PMID: 27457759]
  4. Annu Rev Entomol. 2002;47:817-44 [PMID: 11729092]
  5. Can J Microbiol. 1983 Jul;29(7):755-62 [PMID: 6413046]
  6. FEMS Microbiol Ecol. 2005 Nov 1;54(3):471-7 [PMID: 16332344]
  7. Curr Microbiol. 2008 Apr;56(4):327-33 [PMID: 18172718]
  8. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  9. Proc Biol Sci. 2015 Apr 7;282(1804):20142957 [PMID: 25740892]
  10. Microbiome. 2017 Feb 1;5(1):13 [PMID: 28143582]
  11. J Exp Biol. 1992 Nov 1;172(Pt 1):355-375 [PMID: 9874748]
  12. Bioinformatics. 2015 Sep 1;31(17):2882-4 [PMID: 25957349]
  13. J Econ Entomol. 2006 Jun;99(3):714-21 [PMID: 16813303]
  14. Annu Rev Entomol. 2017 Jan 31;62:265-283 [PMID: 27860521]
  15. Front Microbiol. 2018 Mar 27;9:556 [PMID: 29636736]
  16. Insect Sci. 2019 Aug;26(4):683-694 [PMID: 29425401]
  17. PLoS One. 2010 May 26;5(5):e10831 [PMID: 20520762]
  18. Sci Rep. 2017 Feb 06;7:41395 [PMID: 28165001]
  19. Nat Rev Microbiol. 2012 Mar 16;10(4):266-78 [PMID: 22421879]
  20. Annu Rev Microbiol. 1982;36:323-43 [PMID: 6756291]
  21. Genome Res. 2011 Mar;21(3):494-504 [PMID: 21212162]
  22. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  23. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11917-22 [PMID: 23798396]
  24. Pest Manag Sci. 2020 Apr;76(4):1353-1362 [PMID: 31605420]
  25. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  26. Appl Environ Microbiol. 2004 Jan;70(1):293-300 [PMID: 14711655]
  27. Arch Insect Biochem Physiol. 2020 Apr;103(4):e21654 [PMID: 31916310]
  28. BMC Biol. 2009 Jan 15;7:2 [PMID: 19146674]
  29. Annu Rev Entomol. 2004;49:71-92 [PMID: 14651457]
  30. Front Microbiol. 2017 Apr 26;8:663 [PMID: 28491055]
  31. J Exp Bot. 2015 Feb;66(2):467-78 [PMID: 25385767]
  32. ISME J. 2018 Sep;12(9):2252-2262 [PMID: 29895989]
  33. PLoS One. 2012;7(7):e36978 [PMID: 22815679]
  34. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  35. J Insect Sci. 2018 May 1;18(3): [PMID: 29912410]
  36. Can J Microbiol. 2006 Nov;52(11):1085-92 [PMID: 17215900]
  37. Cell Chem Biol. 2017 Jan 19;24(1):66-75 [PMID: 28107652]
  38. J Bacteriol. 2012 Sep;194(18):5156 [PMID: 22933775]
  39. Environ Microbiol. 2013 Jul;15(7):1956-68 [PMID: 23078522]
  40. Int J Mol Sci. 2013 Oct 18;14(10):21006-20 [PMID: 24145750]

Grants

  1. 2017YFD0600105/National Key Research and Development Program of China
  2. 31800548/National Natural Science Foundation of China
  3. Minlinke [2019] 16/Forestry Science Research Project of Fujian Forestry Department
  4. 71201800743/Forest Science Peak Project of College of Forestry, Fujian Agriculture and Forestry University

Word Cloud

Created with Highcharts 10.0.0gutmicrobiotadietartificialdietslarvaefedstudysterilizednon-sterilizedhost-plantdifferentdevelopmentverticalinheritancetreatmentbacteriaGutinsectswiderangeeffectshostnutritionphysiologybehaviorstructuremayalsoshapedenvironmentcausingadjusthoststhusobjectiveexaminevariationsmorphologicaltraitsresponsenaturalusinghigh-throughputsequencingRegardingmorphologyheadwidthssmallerearlyinstarsdiversityvariedsignificantlychangeperiodsseemedindicateoccurredmutualisticsymbiontsdominantin/oneggsfirstinstaraccounted3352%6788%predominantmicrobestructuresadaptedself-regulationclarifiedimpactsmicrobialsymbiosismightprovidenewpossibilitiesimprovingcontrolBacterialCommunitiesAssociationsHostDevelopmentDietLymantriaxylina

Similar Articles

Cited By (7)