Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections.

Joshua J Iszatt, Alexander N Larcombe, Hak-Kim Chan, Stephen M Stick, Luke W Garratt, Anthony Kicic
Author Information
  1. Joshua J Iszatt: Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia. ORCID
  2. Alexander N Larcombe: Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia. ORCID
  3. Hak-Kim Chan: Advanced Drug Delivery Group, Sydney Pharmacy School, University of Sydney, Camperdown 2006, Australia. ORCID
  4. Stephen M Stick: Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia.
  5. Luke W Garratt: Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia. ORCID
  6. Anthony Kicic: Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia. ORCID

Abstract

The emergence of multi-drug resistant (MDR) bacteria is recognised today as one of the greatest challenges to public health. As traditional antimicrobials are becoming ineffective and research into new antibiotics is diminishing, a number of alternative treatments for MDR bacteria have been receiving greater attention. Bacteriophage therapies are being revisited and present a promising opportunity to reduce the burden of bacterial infection in this post-antibiotic era. This review focuses on the current evidence supporting bacteriophage therapy against prevalent or emerging multi-drug resistant bacterial pathogens in respiratory medicine and the challenges ahead in preclinical data generation. Starting with efforts to improve delivery of bacteriophages to the lung surface, the current developments in animal models for relevant efficacy data on respiratory infections are discussed before finishing with a summary of findings from the select human trials performed to date.

Keywords

References

  1. Infection. 2019 Aug;47(4):665-668 [PMID: 31102236]
  2. Future Microbiol. 2017 Aug;12:905-914 [PMID: 28434234]
  3. J Infect Dis. 2010 Jan 15;201(2):264-71 [PMID: 20001604]
  4. Appl Environ Microbiol. 2019 May 16;85(11): [PMID: 30902858]
  5. Front Microbiol. 2019 Jul 23;10:1674 [PMID: 31396188]
  6. PLoS One. 2018 Oct 11;13(10):e0205728 [PMID: 30308048]
  7. J Wound Care. 2009 Jun;18(6):237-8, 240-3 [PMID: 19661847]
  8. Biofouling. 2013;29(4):457-68 [PMID: 23597188]
  9. J Aerosol Med Pulm Drug Deliv. 2013 Dec;26(6):317-35 [PMID: 23597003]
  10. Nat Commun. 2014 Sep 02;5:4780 [PMID: 25179232]
  11. Eur J Pharm Biopharm. 2018 Apr;125:124-130 [PMID: 29353018]
  12. J Appl Microbiol. 2014 Sep;117(3):627-33 [PMID: 24916438]
  13. J Med Microbiol. 2015 Apr;64(Pt 4):454-462 [PMID: 25681321]
  14. Sci Rep. 2016 Oct 04;6:34338 [PMID: 27698408]
  15. PLoS One. 2016 Oct 25;11(10):e0165225 [PMID: 27780255]
  16. Am J Respir Crit Care Med. 2019 Nov 1;200(9):1126-1133 [PMID: 31260638]
  17. Viruses. 2018 Jun 30;10(7): [PMID: 29966329]
  18. Appl Environ Microbiol. 2019 Apr 18;85(9): [PMID: 30824445]
  19. PLoS One. 2017 Jun 16;12(6):e0179659 [PMID: 28622385]
  20. Adv Drug Deliv Rev. 2019 May;145:4-17 [PMID: 30659855]
  21. Eur J Pharm Biopharm. 2017 Dec;121:1-13 [PMID: 28890220]
  22. Lancet. 2016 Nov 19;388(10059):2519-2531 [PMID: 27140670]
  23. Int J Pharm. 2019 Apr 5;560:11-18 [PMID: 30710661]
  24. Virulence. 2014 Jan 1;5(1):226-35 [PMID: 23973944]
  25. Exp Lung Res. 2016 Oct 11;42(7):380-395 [PMID: 27726456]
  26. Viruses. 2021 Jun 29;13(7): [PMID: 34209836]
  27. Future Microbiol. 2020 Aug;15:1095-1100 [PMID: 32845164]
  28. AAPS J. 2019 Apr 4;21(3):49 [PMID: 30949776]
  29. J Cyst Fibros. 2017 Nov;16(6):663-670 [PMID: 28720345]
  30. Clin Pulm Med. 2016 Mar;23(2):57-66 [PMID: 27004018]
  31. Exp Lung Res. 2014 Nov;40(9):447-59 [PMID: 25191759]
  32. PLoS One. 2011 Feb 15;6(2):e16963 [PMID: 21347240]
  33. JACC Basic Transl Sci. 2016 Apr 25;1(3):170-179 [PMID: 30167510]
  34. Int J Pharm. 2017 Apr 15;521(1-2):141-149 [PMID: 28163231]
  35. Front Microbiol. 2015 Nov 13;6:1271 [PMID: 26617601]
  36. Front Microbiol. 2020 Jun 04;11:1161 [PMID: 32582101]
  37. mBio. 2012 Mar 06;3(2):e00029-12 [PMID: 22396480]
  38. Nat Microbiol. 2020 Mar;5(3):465-472 [PMID: 32066959]
  39. Res Vet Sci. 2013 Oct;95(2):758-63 [PMID: 23790669]
  40. Antimicrob Agents Chemother. 2014 Jul;58(7):4005-13 [PMID: 24798268]
  41. Med Mal Infect. 2008 Aug;38(8):426-30 [PMID: 18687542]
  42. Viruses. 2018 Jun 12;10(6): [PMID: 29895791]
  43. Intensive Care Med. 2020 Feb;46(2):298-314 [PMID: 32034433]
  44. Viruses. 2019 Jan 21;11(1): [PMID: 30669652]
  45. Antibiotics (Basel). 2021 Jan 29;10(2): [PMID: 33572929]
  46. Viruses. 2018 Apr 05;10(4): [PMID: 29621199]
  47. PLoS One. 2017 Jul 25;12(7):e0181671 [PMID: 28742812]
  48. Viruses. 2019 Mar 23;11(3): [PMID: 30909579]
  49. Trends Microbiol. 2021 Jun;29(6):528-541 [PMID: 33243546]
  50. J Cyst Fibros. 2020 Dec 6;: [PMID: 33298374]
  51. Poult Sci. 2003 Jul;82(7):1108-12 [PMID: 12872966]
  52. J Leukoc Biol. 2018 Oct;104(4):665-675 [PMID: 29741792]
  53. PLoS One. 2009;4(3):e4944 [PMID: 19300511]
  54. Front Pharmacol. 2019 May 08;10:513 [PMID: 31139086]
  55. Adv Drug Deliv Rev. 2018 Aug;133:76-86 [PMID: 30096336]
  56. Viruses. 2021 Aug 05;13(8): [PMID: 34452408]
  57. Lett Appl Microbiol. 2012 Apr;54(4):286-91 [PMID: 22251270]
  58. Clin Infect Dis. 2017 Jun 1;64(11):1582-1588 [PMID: 28329379]
  59. Lancet Infect Dis. 2017 Nov;17(11):1133-1161 [PMID: 28843578]
  60. Antimicrob Agents Chemother. 2019 Jul 25;63(8): [PMID: 31182526]
  61. Clin Exp Med. 2009 Dec;9(4):303-12 [PMID: 19350363]
  62. N Engl J Med. 2019 May 16;380(20):1941-1953 [PMID: 31091375]
  63. Antimicrob Agents Chemother. 2018 Jan 25;62(2): [PMID: 29158280]
  64. Microorganisms. 2019 Oct 18;7(10): [PMID: 31635437]
  65. Clin Otolaryngol. 2009 Aug;34(4):349-57 [PMID: 19673983]
  66. Lancet Infect Dis. 2019 Jan;19(1):56-66 [PMID: 30409683]
  67. Intensive Care Med. 2002 Jul;28(7):824-33 [PMID: 12122518]
  68. Front Pharmacol. 2018 Nov 28;9:1330 [PMID: 30546305]
  69. Sci Rep. 2017 Dec 21;7(1):17971 [PMID: 29269735]
  70. Curr Opin Microbiol. 2018 Feb;41:68-75 [PMID: 29216510]
  71. Pediatr Pulmonol. 2020 Nov;55(11):2990-2994 [PMID: 32662948]
  72. Front Microbiol. 2016 Jun 15;7:934 [PMID: 27379064]
  73. Front Immunol. 2017 Dec 11;8:1783 [PMID: 29312312]
  74. mSphere. 2018 Aug 15;3(4): [PMID: 30111629]
  75. Viruses. 2018 Feb 06;10(2): [PMID: 29415431]
  76. Lancet Infect Dis. 2019 Jan;19(1):35-45 [PMID: 30292481]
  77. Antibiotics (Basel). 2020 May 21;9(5): [PMID: 32455536]
  78. Front Microbiol. 2021 Jan 11;11:593988 [PMID: 33505366]
  79. Clin Infect Dis. 2019 Nov 13;69(11):2015-2018 [PMID: 30869755]
  80. Int J Pharm. 2019 Jan 10;554:322-326 [PMID: 30445174]
  81. Curr Opin Microbiol. 2017 Oct;39:48-56 [PMID: 28964986]
  82. Front Cell Infect Microbiol. 2018 Oct 23;8:376 [PMID: 30406049]
  83. Crit Rev Microbiol. 2020 Feb;46(1):78-99 [PMID: 32091280]
  84. Viruses. 2019 Apr 12;11(4): [PMID: 31013833]
  85. Antimicrob Agents Chemother. 2001 Mar;45(3):649-59 [PMID: 11181338]

MeSH Term

Animals
Bacterial Infections
Bacteriophages
Clinical Trials as Topic
Disease Models, Animal
Drug Resistance, Multiple, Bacterial
Humans
Lung
Mice
Phage Therapy
Respiratory Tract Infections

Word Cloud

Created with Highcharts 10.0.0multi-drugrespiratoryresistantMDRbacteriachallengesbacterialcurrentbacteriophagedataemergencerecognisedtodayonegreatestpublichealthtraditionalantimicrobialsbecomingineffectiveresearchnewantibioticsdiminishingnumberalternativetreatmentsreceivinggreaterattentionBacteriophagetherapiesrevisitedpresentpromisingopportunityreduceburdeninfectionpost-antibioticerareviewfocusesevidencesupportingtherapyprevalentemergingpathogensmedicineaheadpreclinicalgenerationStartingeffortsimprovedeliverybacteriophageslungsurfacedevelopmentsanimalmodelsrelevantefficacyinfectionsdiscussedfinishingsummaryfindingsselecthumantrialsperformeddatePhageTherapyMulti-DrugResistantRespiratoryTractInfectionsinfectiousdiseaseresistance

Similar Articles

Cited By