TB and SIV Coinfection; a Model for Evaluating Vaccine Strategies against TB Reactivation in Asian Origin Cynomolgus Macaques: A Pilot Study Using BCG Vaccination.

Andrew D White, Laura Sibley, Jennie Gullick, Charlotte Sarfas, Simon Clark, Zahra Fagrouch, Ernst Verschoor, Francisco J Salguero, Mike Dennis, Sally Sharpe
Author Information
  1. Andrew D White: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK. ORCID
  2. Laura Sibley: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK.
  3. Jennie Gullick: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK.
  4. Charlotte Sarfas: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK. ORCID
  5. Simon Clark: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK.
  6. Zahra Fagrouch: Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
  7. Ernst Verschoor: Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands. ORCID
  8. Francisco J Salguero: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK. ORCID
  9. Mike Dennis: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK.
  10. Sally Sharpe: Public Health England, National Infections Service, Porton Down, Salisbury SP4 0JG, UK. ORCID

Abstract

This pilot study aimed to determine the utility of a cynomolgus macaque model of coinfection with simian immunodeficiency virus (SIV) for the assessment of vaccines designed to prevent reactivation of TB. Following infection caused by aerosol exposure to an ultralow dose of (M. TB), data trends indicated that subsequent coinfection with SIVmac32H perturbed control of M. TB infection as evidenced by the increased occurrence of progressive disease in this group, higher levels of pathology and increased frequency of progressive tuberculous granulomas in the lung. BCG vaccination led to improved control of TB-induced disease and lower viral load in comparison to unvaccinated coinfected animals. The M. TB-specific IFNγ response after exposure to M. TB, previously shown to be associated with bacterial burden, was lower in the BCG-vaccinated group than in the unvaccinated groups. Levels of CD4+ and CD8+ T cells decreased in coinfected animals, with counts recovering more quickly in the BCG-vaccinated group. This pilot study provides proof of concept to support the use of the model for evaluation of interventions against reactivated/exacerbated TB caused by human immunodeficiency virus (HIV) infection.

Keywords

References

  1. J Comp Pathol. 2015 Feb-Apr;152(2-3):217-26 [PMID: 25481611]
  2. PLoS One. 2017 Feb 16;12(2):e0171358 [PMID: 28208160]
  3. PLoS Med. 2008 Aug 5;5(8):e157; discussion e157 [PMID: 18684007]
  4. PLoS One. 2017 Mar 8;12(3):e0171906 [PMID: 28273087]
  5. BMC Med. 2016 May 16;14:76 [PMID: 27183822]
  6. PLoS One. 2010 Mar 10;5(3):e9611 [PMID: 20224771]
  7. Pharmaceutics. 2020 Apr 25;12(5): [PMID: 32344890]
  8. Health Technol Assess. 2013 Sep;17(37):1-372, v-vi [PMID: 24021245]
  9. J Acquir Immune Defic Syndr. 2014 Dec 15;67(5):573-5 [PMID: 25247435]
  10. Immunol Rev. 2015 Mar;264(1):60-73 [PMID: 25703552]
  11. Virology. 1997 Mar 3;229(1):143-54 [PMID: 9123856]
  12. JAMA. 1994 Mar 2;271(9):698-702 [PMID: 8309034]
  13. BMC Infect Dis. 2014 Oct 24;14:548 [PMID: 25338623]
  14. Sci Rep. 2021 Jun 10;11(1):12274 [PMID: 34112845]
  15. J Infect Dis. 2010 Mar;201(5):653-5 [PMID: 20121432]
  16. Tuberculosis (Edinb). 2016 Jan;96:1-12 [PMID: 26786648]
  17. Lab Anim. 2018 Dec;52(6):599-610 [PMID: 29482429]
  18. J Gen Virol. 2016 Dec;97(12):3413-3426 [PMID: 27902330]
  19. Infect Immun. 2003 Oct;71(10):5831-44 [PMID: 14500505]
  20. Tuberculosis (Edinb). 2016 Dec;101:174-190 [PMID: 27865390]
  21. Infect Immun. 2002 Jun;70(6):3026-32 [PMID: 12010994]
  22. PLoS One. 2014 Feb 26;9(2):e89612 [PMID: 24586912]
  23. Braz J Infect Dis. 2015 Mar-Apr;19(2):125-31 [PMID: 25529365]
  24. N Engl J Med. 2019 Dec 19;381(25):2429-2439 [PMID: 31661198]
  25. Tuberculosis (Edinb). 2006 May-Jul;86(3-4):273-89 [PMID: 16545981]
  26. Clin Vaccine Immunol. 2010 Aug;17(8):1170-82 [PMID: 20534795]
  27. J Infect Dis. 2014 Feb 15;209(4):500-9 [PMID: 24041796]
  28. Front Immunol. 2019 Sep 03;10:2089 [PMID: 31552037]
  29. NPJ Vaccines. 2021 Jan 4;6(1):4 [PMID: 33397991]
  30. J Clin Invest. 2012 Jan;122(1):303-14 [PMID: 22133873]
  31. Immunogenetics. 2012 Feb;64(2):123-9 [PMID: 21881952]
  32. Tuberculosis (Edinb). 2009 Nov;89(6):405-16 [PMID: 19879805]
  33. AIDS Res Hum Retroviruses. 2001 Feb 10;17(3):243-51 [PMID: 11177407]

Grants

  1. 11/0105/Seventh Framework Programme

Word Cloud

Created with Highcharts 10.0.0TBMcoinfectionSIVinfectiontbgrouppilotstudymodelimmunodeficiencyvirusreactivationcausedexposurecontrolincreasedprogressivediseaseBCGlowerunvaccinatedcoinfectedanimalsBCG-vaccinatedaimeddetermineutilitycynomolgusmacaquesimianassessmentvaccinesdesignedpreventFollowingaerosolultralowdosedatatrendsindicatedsubsequentSIVmac32HperturbedevidencedoccurrencehigherlevelspathologyfrequencytuberculousgranulomaslungvaccinationledimprovedTB-inducedviralloadcomparisontb-specificIFNγresponsepreviouslyshownassociatedbacterialburdengroupsLevelsCD4+CD8+Tcellsdecreasedcountsrecoveringquicklyprovidesproofconceptsupportuseevaluationinterventionsreactivated/exacerbatedhumanHIVCoinfectionModelEvaluatingVaccineStrategiesReactivationAsianOriginCynomolgusMacaques:PilotStudyUsingVaccinationmacaquestuberculosis

Similar Articles

Cited By (8)