Positive selection on mitochondria may eliminate heritable microbes from arthropod populations.

Andy Fenton, M Florencia Camus, Gregory D D Hurst
Author Information
  1. Andy Fenton: Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK. ORCID
  2. M Florencia Camus: Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK. ORCID
  3. Gregory D D Hurst: Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK. ORCID

Abstract

Diverse eukaryotic taxa carry facultative heritable symbionts, microbes that are passed from mother to offspring. These symbionts are coinherited with mitochondria, and selection favouring either new symbionts, or new symbiont variants, is known to drive loss of mitochondrial diversity as a correlated response. More recently, evidence has accumulated of episodic directional selection on mitochondria, but with currently unknown consequences for symbiont evolution. We therefore employed a population genetic mean field framework to model the impact of selection on mitochondrial DNA (mtDNA) upon symbiont frequency for three generic scenarios of host-symbiont interaction. Our models predict that direct selection on mtDNA can drive symbionts out of the population where a positively selected mtDNA mutation occurs initially in an individual that is uninfected with the symbiont, and the symbiont is initially at low frequency. When, by contrast, the positively selected mtDNA mutation occurs in a symbiont-infected individual, the mutation becomes fixed and in doing so removes symbiont variation from the population. We conclude that the molecular evolution of symbionts and mitochondria, which has previously been viewed from a perspective of selection on symbionts driving the evolution of a neutral mtDNA marker, should be reappraised in the light of positive selection on mtDNA.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.5354999.v2; 10.6084/m9.figshare.c.5619539

References

  1. Genetics. 1992 Nov;132(3):713-23 [PMID: 1468627]
  2. Appl Environ Microbiol. 2002 Feb;68(2):999-1004 [PMID: 11823253]
  3. PLoS Pathog. 2016 Jun 20;12(6):e1005629 [PMID: 27322651]
  4. Genetics. 2000 Oct;156(2):699-709 [PMID: 11014817]
  5. BMC Evol Biol. 2009 Mar 24;9:64 [PMID: 19317891]
  6. Evolution. 2020 Aug;74(8):1724-1740 [PMID: 32246837]
  7. Am Nat. 2011 Sep;178(3):333-42 [PMID: 21828990]
  8. PLoS Genet. 2018 Nov 6;14(11):e1007735 [PMID: 30399141]
  9. Genetics. 1990 Dec;126(4):933-48 [PMID: 2076821]
  10. Proc Biol Sci. 2021 Sep 29;288(1959):20211735 [PMID: 34583583]
  11. Trends Ecol Evol. 1995 Dec;10(12):485-8 [PMID: 21237113]
  12. Curr Biol. 2018 Mar 19;28(6):963-971.e8 [PMID: 29526588]
  13. Microb Ecol. 2021 Jan;81(1):203-212 [PMID: 32770272]
  14. Philos Trans R Soc Lond B Biol Sci. 2014 Jul 5;369(1646):20130443 [PMID: 24864313]
  15. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6616-6621 [PMID: 32156736]
  16. Nature. 2000 May 11;405(6783):178-9 [PMID: 10821272]
  17. Interface Focus. 2017 Oct 6;7(5):20170001 [PMID: 28839925]
  18. PLoS One. 2012;7(6):e38544 [PMID: 22685581]
  19. Heredity (Edinb). 2007 Oct;99(4):389-96 [PMID: 17551522]
  20. Proc Biol Sci. 2001 Jun 7;268(1472):1123-6 [PMID: 11375098]
  21. Nat Commun. 2020 Oct 16;11(1):5235 [PMID: 33067437]
  22. Cold Spring Harb Perspect Biol. 2015 May 01;7(5): [PMID: 25934011]
  23. PLoS Pathog. 2013 Sep;9(9):e1003607 [PMID: 24068927]
  24. Mol Ecol. 2013 Apr;22(8):2106-17 [PMID: 23452233]
  25. Evolution. 1994 Oct;48(5):1500-1513 [PMID: 28568404]
  26. Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2023-2027 [PMID: 12508863]
  27. Genet Res. 1996 Oct;68(2):131-49 [PMID: 8940902]
  28. Genetics. 1995 Aug;140(4):1319-38 [PMID: 7498773]
  29. Mol Ecol. 2008 Jan;17(2):557-69 [PMID: 18179432]
  30. PLoS Biol. 2006 Sep;4(9):e283 [PMID: 16933972]
  31. Mol Biol Evol. 2017 Oct 1;34(10):2600-2612 [PMID: 28637217]
  32. BMC Biol. 2008 Jun 24;6:27 [PMID: 18577218]
  33. Proc Biol Sci. 2005 Aug 7;272(1572):1525-34 [PMID: 16048766]
  34. Proc Biol Sci. 1998 Dec 22;265(1413):2407-13 [PMID: 9921679]
  35. Genetics. 2003 May;164(1):5-12 [PMID: 12750316]
  36. Mol Ecol. 2009 Nov;18(22):4541-50 [PMID: 19821901]
  37. Heredity (Edinb). 2000 May;84 ( Pt 5):605-9 [PMID: 10849086]

MeSH Term

Animals
Arthropods
DNA, Mitochondrial
Evolution, Molecular
Mitochondria
Symbiosis

Chemicals

DNA, Mitochondrial

Word Cloud

Created with Highcharts 10.0.0selectionsymbiontssymbiontmtDNAmitochondriapopulationevolutionmutationheritablemicrobesnewdrivemitochondrialfrequencypositivelyselectedoccursinitiallyindividualDiverseeukaryotictaxacarryfacultativepassedmotheroffspringcoinheritedfavouringeithervariantsknownlossdiversitycorrelatedresponserecentlyevidenceaccumulatedepisodicdirectionalcurrentlyunknownconsequencesthereforeemployedgeneticmeanfieldframeworkmodelimpactDNAuponthreegenericscenarioshost-symbiontinteractionmodelspredictdirectcanuninfectedlowcontrastsymbiont-infectedbecomesfixedremovesvariationconcludemolecularpreviouslyviewedperspectivedrivingneutralmarkerreappraisedlightpositivePositivemayeliminatearthropodpopulationsgeneticssymbiosis

Similar Articles

Cited By