Transcriptional Regulation of Congocidine (Netropsin) Biosynthesis and Resistance.

Audrey Vingadassalon, Florence Lorieux, Maud Juguet, Alba Noël, Luisa D F Santos, Laura Marin Fernandez, Jean-Luc Pernodet, Stéphanie Bury-Moné, Sylvie Lautru
Author Information
  1. Audrey Vingadassalon: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
  2. Florence Lorieux: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
  3. Maud Juguet: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
  4. Alba Noël: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
  5. Luisa D F Santos: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
  6. Laura Marin Fernandez: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
  7. Jean-Luc Pernodet: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France. ORCID
  8. Stéphanie Bury-Moné: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
  9. Sylvie Lautru: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France. ORCID

Abstract

The production of specialized metabolites by bacteria is usually temporally regulated. This regulation is complex and frequently involves both global and pathway-specific mechanisms. Streptomyces ambofaciens ATCC23877 produces several specialized metabolites, including spiramycins, stambomycins, kinamycins and congocidine. The production of the first three molecules has been shown to be controlled by one or several cluster-situated transcriptional regulators. However, nothing is known regarding the regulation of congocidine biosynthesis. Congocidine (netropsin) belongs to the family of pyrrolamide metabolites, which also includes distamycin and anthelvencins. Most pyrrolamides bind into the minor groove of DNA, specifically in A/T-rich regions, which gives them numerous biological activities, such as antimicrobial and antitumoral activities. We previously reported the characterization of the pyrrolamide biosynthetic gene clusters of congocidine () in S. ambofaciens ATCC23877, distamycin () in Streptomyces netropsis DSM40846, and anthelvencins () in Streptomyces venezuelae ATCC14583. The three gene clusters contain a gene encoding a putative transcriptional regulator, , , and respectively. Cgc1, Dst1, and Ant1 present a high percentage of amino acid sequence similarity. We demonstrate here that Cgc1, an atypical orphan response regulator, activates the transcription of all genes in the stationary phase of S. ambofaciens growth. We also show that the cluster is constituted of eight main transcriptional units. Finally, we show that congocidine induces the expression of the transcriptional regulator Cgc1 and of the operon containing the resistance genes ( and , coding for an ABC transporter), and propose a model for the transcriptional regulation of the gene cluster. Understanding the mechanisms of regulation of specialized metabolite production can have important implications both at the level of specialized metabolism study (expression of silent gene clusters) and at the biotechnological level (increase of the production of a metabolite of interest). We report here a study on the regulation of the biosynthesis of a metabolite from the pyrrolamide family, congocidine. We show that congocidine biosynthesis and resistance are controlled by Cgc1, a cluster-situated regulator. As the gene clusters directing the biosynthesis of the pyrrolamides distamycin and anthelvencin encode a homolog of Cgc1, our findings may be relevant for the biosynthesis of other pyrrolamides. In addition, our results reveal a new type of feed-forward induction mechanism, in which congocidine induces its own biosynthesis through the induction of the transcription of .

Keywords

References

  1. Pharmacol Ther. 2013 Jul;139(1):12-23 [PMID: 23507040]
  2. AMB Express. 2012 Jan 03;2(1):1 [PMID: 22214346]
  3. Mol Microbiol. 1998 Apr;28(2):333-42 [PMID: 9622358]
  4. Appl Environ Microbiol. 2019 Aug 1;85(16): [PMID: 31175189]
  5. Mol Microbiol. 2009 Jun;72(6):1462-74 [PMID: 19460097]
  6. Arch Pharm (Weinheim). 2015 Jul;348(7):455-62 [PMID: 25917027]
  7. Adv Appl Microbiol. 2004;54:107-28 [PMID: 15251278]
  8. J Microbiol. 2008 Feb;46(1):1-11 [PMID: 18337685]
  9. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  10. Antimicrob Agents Chemother. 2010 Jul;54(7):2830-9 [PMID: 20439613]
  11. Nat Prod Rep. 2001 Jun;18(3):291-309 [PMID: 11476483]
  12. Annu Rev Microbiol. 2012;66:325-47 [PMID: 22746333]
  13. Nucleic Acids Res. 2009 Sep;37(16):5550-8 [PMID: 19578063]
  14. PLoS One. 2012;7(10):e46758 [PMID: 23056438]
  15. FEMS Microbiol Rev. 2016 Jul;40(4):554-73 [PMID: 27288284]
  16. Appl Environ Microbiol. 2006 Jul;72(7):4839-44 [PMID: 16820478]
  17. Appl Environ Microbiol. 2011 Aug;77(15):5370-83 [PMID: 21685164]
  18. Mol Microbiol. 2019 Jul;112(1):249-265 [PMID: 31017319]
  19. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8617-22 [PMID: 19423672]
  20. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  21. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31 [PMID: 15215404]
  22. Gene. 1985;33(1):103-19 [PMID: 2985470]
  23. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83 [PMID: 10811905]
  24. Environ Microbiol Rep. 2018 Jun;10(3):231-238 [PMID: 29457705]
  25. Mol Microbiol. 2007 Feb;63(4):951-61 [PMID: 17338074]
  26. ACS Chem Biol. 2020 Apr 17;15(4):945-951 [PMID: 32129986]
  27. Nucleic Acids Res. 1995 Sep 11;23(17):3385-92 [PMID: 7567447]
  28. Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 [PMID: 7584402]
  29. mBio. 2012 Oct 16;3(5):e00191-12 [PMID: 23073761]
  30. J Bacteriol. 1996 Nov;178(21):6310-8 [PMID: 8892835]
  31. Nucleic Acids Res. 1979 Jun 25;6(8):2831-7 [PMID: 461206]
  32. Peptides. 2004 Sep;25(9):1405-14 [PMID: 15374644]
  33. FEMS Microbiol Lett. 2010 May;306(2):160-7 [PMID: 20529134]
  34. Microbiology (Reading). 2009 Dec;155(Pt 12):4025-4035 [PMID: 19762445]
  35. Biochemistry. 1987 Feb 10;26(3):950-6 [PMID: 3032240]
  36. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  37. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):E2500-9 [PMID: 23776227]
  38. ACS Chem Biol. 2015 Feb 20;10(2):601-10 [PMID: 25415678]
  39. J Bacteriol. 1999 Nov;181(22):6958-68 [PMID: 10559161]
  40. J Gen Microbiol. 1993 May;139(5):1003-11 [PMID: 7687646]
  41. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1376-80 [PMID: 2983343]
  42. Nat Commun. 2021 Sep 1;12(1):5221 [PMID: 34471117]
  43. Chem Biol. 2009 Apr 24;16(4):421-31 [PMID: 19389628]
  44. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  45. Microbiology (Reading). 2019 Feb;165(2):233-245 [PMID: 30543507]
  46. Chemistry. 2021 May 6;27(26):7321-7339 [PMID: 33481284]
  47. Antimicrob Agents Chemother. 1997 May;41(5):1203-5 [PMID: 9145902]
  48. 3 Biotech. 2017 Aug;7(4):250 [PMID: 28718097]
  49. Biochemistry. 1988 Feb 23;27(4):1198-205 [PMID: 2835086]
  50. Microbiology (Reading). 2019 Sep;165(9):929-952 [PMID: 31334697]
  51. Microbiology (Reading). 1998 Mar;144 ( Pt 3):727-738 [PMID: 9534242]

Grants

  1. DIM Maladies infectieuses parasitaires et nosocomiales/Région Ile de France
  2. /Fondation pour la Recherche Médicale (FRM)

MeSH Term

Distamycins
Gene Expression Regulation, Bacterial
Genes, Bacterial
Multigene Family
Netropsin
Streptomyces

Chemicals

Distamycins
Netropsin

Word Cloud

Created with Highcharts 10.0.0congocidineregulationbiosynthesisgenetranscriptionalCgc1productionspecializedStreptomycespyrrolamideclustersregulatormetabolitesambofaciensdistamycinpyrrolamidesshowresistancemetabolitemechanismsATCC23877severalthreecontrolledcluster-situatedCongocidinefamilyalsoanthelvencinsactivitiesStranscriptiongenesclusterinducesexpressionlevelstudyinductionbacteriausuallytemporallyregulatedcomplexfrequentlyinvolvesglobalpathway-specificproducesincludingspiramycinsstambomycinskinamycinsfirstmoleculesshownoneregulatorsHowevernothingknownregardingnetropsinbelongsincludesbindminorgrooveDNAspecificallyA/T-richregionsgivesnumerousbiologicalantimicrobialantitumoralpreviouslyreportedcharacterizationbiosyntheticnetropsisDSM40846venezuelaeATCC14583containencodingputativerespectivelyDst1Ant1presenthighpercentageaminoacidsequencesimilaritydemonstrateatypicalorphanresponseactivatesstationaryphasegrowthconstitutedeightmainunitsFinallyoperoncontainingcodingABCtransporterproposemodelUnderstandingcanimportantimplicationsmetabolismsilentbiotechnologicalincreaseinterestreportdirectinganthelvencinencodehomologfindingsmayrelevantadditionresultsrevealnewtypefeed-forwardmechanismTranscriptionalRegulationNetropsinBiosynthesisResistanceantibiotic

Similar Articles

Cited By