Establishment of a prognostic model for patients with sepsis based on SOFA: a retrospective cohort study.

Hui Liu, Luming Zhang, Fengshuo Xu, Shaojin Li, Zichen Wang, Didi Han, Feng Zhang, Jun Lyu, Haiyan Yin
Author Information
  1. Hui Liu: Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
  2. Luming Zhang: Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
  3. Fengshuo Xu: Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
  4. Shaojin Li: Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
  5. Zichen Wang: Department of Public Health, University of California, Irvine, CA, USA.
  6. Didi Han: Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
  7. Feng Zhang: Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
  8. Jun Lyu: Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China. ORCID
  9. Haiyan Yin: Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China. ORCID

Abstract

OBJECTIVE: To construct a nomogram based on the Sequential Organ Failure Assessment (SOFA) that is more accurate in predicting 30-, 60-, and 90-day mortality risk in patients with sepsis.
METHODS: Data from patients with sepsis were retrospectively collected from the Medical Information Mart for Intensive Care (MIMIC) database. Included patients were randomly divided into training and validation cohorts. Variables were selected using a backward stepwise selection method with Cox regression, then used to construct a prognostic nomogram. The nomogram was compared with the SOFA model using the concordance index (C-index), area under the time-dependent receiver operating characteristics curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration plotting, and decision-curve analysis (DCA).
RESULTS: A total of 5240 patients were included in the study. Patient's age, SOFA score, metastatic cancer, SpO, lactate, body temperature, albumin, and red blood cell distribution width were included in the nomogram. The C-index, AUC, NRI, IDI, and DCA of the nomogram showed that it performs better than the SOFA alone.
CONCLUSION: A nomogram was established that performed better than the SOFA in predicting 30-, 60-, and 90-day mortality risk in patients with sepsis.

Keywords

References

  1. BMC Geriatr. 2017 May 15;17(1):108 [PMID: 28506216]
  2. Crit Care. 2020 Feb 18;24(1):57 [PMID: 32070393]
  3. JAMA. 2016 Feb 23;315(8):801-10 [PMID: 26903338]
  4. Acta Med Acad. 2016 Nov;45(2):97-103 [PMID: 28000485]
  5. Front Med (Lausanne). 2021 Jan 21;7:609769 [PMID: 33553206]
  6. Med Hypotheses. 2020 Nov;144:109946 [PMID: 32512494]
  7. Shock. 2018 Feb;49(2):120-125 [PMID: 28767543]
  8. Crit Care Med. 2018 Jun;46(6):e489-e495 [PMID: 29432347]
  9. J Clin Oncol. 2008 Mar 10;26(8):1364-70 [PMID: 18323559]
  10. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017 Aug;29(8):700-704 [PMID: 28795667]
  11. BMC Pulm Med. 2020 Jan 9;20(1):7 [PMID: 31918697]
  12. Crit Care Med. 2006 Jan;34(1):15-21 [PMID: 16374151]
  13. Am J Emerg Med. 2018 Jun;36(6):949-953 [PMID: 29133071]
  14. Clin Chim Acta. 2018 Dec;487:112-116 [PMID: 30218659]
  15. J Intensive Care. 2020 Jul 2;8:45 [PMID: 32637121]
  16. Lancet Oncol. 2015 Apr;16(4):e173-80 [PMID: 25846097]
  17. Crit Care Med. 2014 Apr;42(4):918-29 [PMID: 24448196]
  18. Crit Care. 2018 Dec 18;22(1):347 [PMID: 30563548]
  19. BMC Med Inform Decis Mak. 2008 Nov 26;8:53 [PMID: 19036144]
  20. J Evid Based Med. 2020 Feb;13(1):57-69 [PMID: 32086994]
  21. Stat Biosci. 2015 Oct 1;7(2):282-295 [PMID: 26504496]
  22. Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):16-27 [PMID: 26667886]
  23. Crit Care. 2020 May 19;24(1):239 [PMID: 32430052]
  24. Ann Intern Med. 2007 Oct 16;147(8):573-7 [PMID: 17938396]
  25. Ann Palliat Med. 2020 May;9(3):1037-1044 [PMID: 32498525]
  26. Scand J Trauma Resusc Emerg Med. 2019 Apr 30;27(1):51 [PMID: 31039813]
  27. Crit Care. 2019 Nov 29;23(1):387 [PMID: 31783881]
  28. Curr Vasc Pharmacol. 2013 Mar 1;11(2):161-9 [PMID: 23506495]
  29. Crit Care Med. 2011 Aug;39(8):1913-21 [PMID: 21532476]
  30. J Int Med Res. 2020 Jan;48(1):300060519866100 [PMID: 31429338]
  31. Crit Care Med. 2012 Apr;40(4):1309-16 [PMID: 22202709]
  32. Anticancer Agents Med Chem. 2016;16(1):101-7 [PMID: 26299661]
  33. Anaesthesiol Intensive Ther. 2016;48(4):261-265 [PMID: 27660252]
  34. Stat Med. 2017 Dec 10;36(28):4498-4502 [PMID: 29156504]
  35. Sci Data. 2016 May 24;3:160035 [PMID: 27219127]
  36. Caspian J Intern Med. 2013 Spring;4(2):627-35 [PMID: 24009950]

MeSH Term

Humans
Intensive Care Units
Nomograms
Prognosis
ROC Curve
Retrospective Studies
SEER Program
Sepsis

Word Cloud

Created with Highcharts 10.0.0nomogramSOFApatientssepsismortalityconstructbasedpredicting30-60-90-dayriskusingprognosticmodelC-indexAUCimprovementNRIIDIDCAincludedstudybetterOBJECTIVE:SequentialOrganFailureAssessmentaccurateMETHODS:DataretrospectivelycollectedMedicalInformationMartIntensiveCareMIMICdatabaseIncludedrandomlydividedtrainingvalidationcohortsVariablesselectedbackwardstepwiseselectionmethodCoxregressionusedcomparedconcordanceindexareatime-dependentreceiveroperatingcharacteristicscurvenetreclassificationintegrateddiscriminationcalibrationplottingdecision-curveanalysisRESULTS:total5240Patient'sagescoremetastaticcancerSpOlactatebodytemperaturealbuminredbloodcelldistributionwidthshowedperformsaloneCONCLUSION:establishedperformedEstablishmentSOFA:retrospectivecohortMIMIC-IIIsurvival

Similar Articles

Cited By