A more accurate method for colocalisation analysis allowing for multiple causal variants.

Chris Wallace
Author Information
  1. Chris Wallace: Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom. ORCID

Abstract

In genome-wide association studies (GWAS) it is now common to search for, and find, multiple causal variants located in close proximity. It has also become standard to ask whether different traits share the same causal variants, but one of the popular methods to answer this question, coloc, makes the simplifying assumption that only a single causal variant exists for any given trait in any genomic region. Here, we examine the potential of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows evidence for association at multiple causal variants to be evaluated simultaneously, whilst separating the statistical support for each variant conditional on the causal signal being considered. We show this results in more accurate coloc inference than other proposals to adapt coloc for multiple causal variants based on conditioning. We therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analyses when multiple causal variants exist.

References

  1. Bioinformatics. 2016 May 15;32(10):1493-501 [PMID: 26773131]
  2. Genet Epidemiol. 2016 Apr;40(3):188-201 [PMID: 27027514]
  3. PLoS Genet. 2014 May 15;10(5):e1004383 [PMID: 24830394]
  4. Nat Commun. 2019 Jul 19;10(1):3216 [PMID: 31324808]
  5. PLoS Genet. 2009 Jun;5(6):e1000529 [PMID: 19543373]
  6. PLoS Comput Biol. 2020 Apr 10;16(4):e1007778 [PMID: 32275709]
  7. Ann Appl Stat. 2017;11(3):1561-1592 [PMID: 29399241]
  8. Nature. 2015 Oct 1;526(7571):68-74 [PMID: 26432245]
  9. J R Stat Soc Series B Stat Methodol. 2020 Dec;82(5):1273-1300 [PMID: 37220626]
  10. Am J Hum Genet. 2016 Dec 1;99(6):1245-1260 [PMID: 27866706]
  11. PLoS Genet. 2020 Apr 20;16(4):e1008720 [PMID: 32310995]
  12. Genetics. 2014 Oct;198(2):497-508 [PMID: 25104515]
  13. Nat Genet. 2012 Mar 18;44(4):369-75, S1-3 [PMID: 22426310]
  14. Bioinformatics. 2016 Jan 15;32(2):283-5 [PMID: 26395773]
  15. Nat Commun. 2018 Mar 2;9(1):918 [PMID: 29500431]
  16. Genet Epidemiol. 2009 Jan;33(1):79-86 [PMID: 18642345]
  17. Nat Genet. 2012 Dec;44(12):1294-301 [PMID: 23104008]
  18. Bioinformatics. 2019 Jun 1;35(11):1901-1906 [PMID: 30371734]

Grants

  1. BRC-1215-20014/Department of Health
  2. MC UU 00002/4/Medical Research Council
  3. WT220788/Wellcome Trust
  4. WT107881/Wellcome Trust
  5. /Wellcome Trust
  6. MC_UU_00002/4/Medical Research Council

MeSH Term

Bayes Theorem
Causality
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Linkage Disequilibrium

Word Cloud

Created with Highcharts 10.0.0causalvariantsmultiplecolocSuSiEassociationvariantusedaccuratecolocalisationgenome-widestudiesGWASnowcommonsearchfindlocatedcloseproximityalsobecomestandardaskwhetherdifferenttraitsshareonepopularmethodsanswerquestionmakessimplifyingassumptionsingleexistsgiventraitgenomicregionexaminepotentialrecentlyproposedSumSingleEffectsregressionframeworkcanfine-mappinggeneticsignalsusenovelapproachallowsevidenceevaluatedsimultaneouslywhilstseparatingstatisticalsupportconditionalsignalconsideredshowresultsinferenceproposalsadaptbasedconditioningthereforerecommendcombinationoptimiseaccuracyanalysesexistmethodanalysisallowing

Similar Articles

Cited By