Emergency of Tsallis statistics in fractal networks.

Airton Deppman, Evandro Oliveira Andrade-Ii
Author Information
  1. Airton Deppman: Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil. ORCID
  2. Evandro Oliveira Andrade-Ii: Departamento de Física, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil. ORCID

Abstract

Scale-free networks constitute a fast-developing field that has already provided us with important tools to understand natural and social phenomena. From biological systems to environmental modifications, from quantum fields to high energy collisions, or from the number of contacts one person has, on average, to the flux of vehicles in the streets of urban centres, all these complex, non-linear problems are better understood under the light of the scale-free network's properties. A few mechanisms have been found to explain the emergence of scale invariance in complex networks, and here we discuss a mechanism based on the way information is locally spread among agents in a scale-free network. We show that the correct description of the information dynamics is given in terms of the q-exponential function, with the power-law behaviour arising in the asymptotic limit. This result shows that the best statistical approach to the information dynamics is given by Tsallis Statistics. We discuss the main properties of the information spreading process in the network and analyse the role and behaviour of some of the parameters as the number of agents increases. The different mechanisms for optimization of the information spread are discussed.

References

  1. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  2. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7301-6 [PMID: 17438298]
  3. Nature. 2005 Jan 27;433(7024):392-5 [PMID: 15674285]
  4. Sci Rep. 2021 Jan 13;11(1):1130 [PMID: 33441951]
  5. Proc Biol Sci. 2007 Sep 7;274(1622):2195-202 [PMID: 17609186]
  6. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  7. Sci Rep. 2021 Feb 25;11(1):4619 [PMID: 33633290]
  8. Phys Rev Lett. 2000 Dec 11;85(24):5234-7 [PMID: 11102229]
  9. Phys Rev Lett. 2000 Nov 20;85(21):4626-8 [PMID: 11082612]
  10. Science. 2013 Jun 21;340(6139):1418-9 [PMID: 23788792]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062806 [PMID: 23848728]
  12. Chaos Solitons Fractals. 2020 Nov;140:110119 [PMID: 33519108]
  13. Proc Math Phys Eng Sci. 2020 Sep;476(2241):20190742 [PMID: 33071564]
  14. Sci Rep. 2021 Mar 22;11(1):6542 [PMID: 33753807]
  15. Nat Commun. 2020 Nov 27;11(1):6043 [PMID: 33247151]
  16. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19540-5 [PMID: 22114186]
  17. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 [PMID: 12060727]
  18. J R Soc Interface. 2016 Jan;13(114):20150937 [PMID: 26790997]
  19. Science. 2013 Jun 21;340(6139):1438-41 [PMID: 23788793]
  20. Science. 1999 Jun 4;284(5420):1677-9 [PMID: 10356399]
  21. Phys Rev Lett. 2001 Apr 2;86(14):3200-3 [PMID: 11290142]
  22. Nat Commun. 2019 Mar 4;10(1):1016 [PMID: 30833568]
  23. J Comput Biol. 2006 Apr;13(3):810-8 [PMID: 16706727]
  24. J R Soc Interface. 2005 Sep 22;2(4):295-307 [PMID: 16849187]
  25. Entropy (Basel). 2018 Aug 24;20(9): [PMID: 33265722]

MeSH Term

Fractals
Humans
Models, Statistical
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0informationnetworksnumbercomplexscale-freepropertiesmechanismsdiscussspreadagentsnetworkdynamicsgivenbehaviourTsallisScale-freeconstitutefast-developingfieldalreadyprovidedusimportanttoolsunderstandnaturalsocialphenomenabiologicalsystemsenvironmentalmodificationsquantumfieldshighenergycollisionscontactsonepersonaveragefluxvehiclesstreetsurbancentresnon-linearproblemsbetterunderstoodlightnetwork'sfoundexplainemergencescaleinvariancemechanismbasedwaylocallyamongshowcorrectdescriptiontermsq-exponentialfunctionpower-lawarisingasymptoticlimitresultshowsbeststatisticalapproachStatisticsmainspreadingprocessanalyseroleparametersincreasesdifferentoptimizationdiscussedEmergencystatisticsfractal

Similar Articles

Cited By