Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes.

Casey L Yanos, Eeke P Haanstra, Fiona Colgan Carey, Sorsha A Passmore, Johan S Eklöf, Ulf Bergström, Joakim P Hansen, Michael C Fontaine, Martine E Maan, Britas Klemens Eriksson
Author Information
  1. Casey L Yanos: Groningen Institute for Evolutionary Life-Sciences GELIFES University of Groningen Groningen The Netherlands. ORCID
  2. Eeke P Haanstra: Groningen Institute for Evolutionary Life-Sciences GELIFES University of Groningen Groningen The Netherlands.
  3. Fiona Colgan Carey: Groningen Institute for Evolutionary Life-Sciences GELIFES University of Groningen Groningen The Netherlands.
  4. Sorsha A Passmore: Groningen Institute for Evolutionary Life-Sciences GELIFES University of Groningen Groningen The Netherlands.
  5. Johan S Eklöf: Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden. ORCID
  6. Ulf Bergström: Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden.
  7. Joakim P Hansen: Stockholm University Baltic Sea Centre Stockholm Sweden.
  8. Michael C Fontaine: Groningen Institute for Evolutionary Life-Sciences GELIFES University of Groningen Groningen The Netherlands. ORCID
  9. Martine E Maan: Groningen Institute for Evolutionary Life-Sciences GELIFES University of Groningen Groningen The Netherlands. ORCID
  10. Britas Klemens Eriksson: Groningen Institute for Evolutionary Life-Sciences GELIFES University of Groningen Groningen The Netherlands. ORCID

Abstract

Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback () in the Baltic Sea. Two morphotype groups with different levels of body armor-completely plated and incompletely plated-are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near-shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch ( and pike (). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat-forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.

Keywords

References

  1. Ambio. 2015 Jun;44 Suppl 3:462-71 [PMID: 26022328]
  2. PLoS One. 2013;8(4):e59644 [PMID: 23573203]
  3. Curr Biol. 2008 May 20;18(10):769-774 [PMID: 18485710]
  4. Ecol Evol. 2013 Jun;3(6):1717-26 [PMID: 23789080]
  5. Commun Biol. 2020 Aug 27;3(1):459 [PMID: 32855431]
  6. Am Nat. 1992 Jul;140(1):85-108 [PMID: 19426066]
  7. Evolution. 2004 Mar;58(3):608-18 [PMID: 15119444]
  8. BMC Evol Biol. 2018 Feb 5;18(1):14 [PMID: 29402230]
  9. Science. 1994 Nov 4;266(5186):798-801 [PMID: 17730400]
  10. Nature. 2009 Apr 30;458(7242):1167-70 [PMID: 19339968]
  11. Ecol Evol. 2021 Aug 12;11(18):12485-12496 [PMID: 34594514]
  12. Proc Biol Sci. 2017 Jul 26;284(1859): [PMID: 28724727]
  13. Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9955-62 [PMID: 19528639]
  14. PLoS Genet. 2016 Feb 29;12(2):e1005887 [PMID: 26925837]
  15. Evolution. 2011 Oct;65(10):2916-26 [PMID: 21967432]
  16. Proc Biol Sci. 2000 Dec 7;267(1460):2375-84 [PMID: 11133026]
  17. Biol Rev Camb Philos Soc. 1976 Nov;51(4):407-25 [PMID: 1088084]
  18. Mar Pollut Bull. 2007;55(1-6):258-70 [PMID: 17010998]
  19. Evolution. 2013 Apr;67(4):1204-8 [PMID: 23550768]
  20. Evolution. 1993 Dec;47(6):1637-1653 [PMID: 28568007]
  21. J Evol Biol. 2010 Jul;23(7):1436-46 [PMID: 20456572]
  22. Am Nat. 2003 Jan;161(1):1-28 [PMID: 12650459]
  23. Anim Behav. 1998 Nov;56(5):1205-1211 [PMID: 9819337]
  24. Curr Biol. 2014 Jun 2;24(11):1289-92 [PMID: 24856211]
  25. Science. 2005 Mar 25;307(5717):1928-33 [PMID: 15790847]
  26. Proc Biol Sci. 2008 Aug 7;275(1644):1793-801 [PMID: 18460432]
  27. Evolution. 1972 Mar;26(1):32-51 [PMID: 28555771]
  28. Sci Rep. 2017 Jul 18;7(1):5770 [PMID: 28720857]
  29. PeerJ. 2020 Jul 17;8:e9521 [PMID: 32742798]
  30. Evolution. 1992 Aug;46(4):1224-1230 [PMID: 28564400]
  31. Ambio. 2011 Nov;40(7):786-97 [PMID: 22338716]
  32. Trends Ecol Evol. 1994 Aug;9(8):285-8 [PMID: 21236856]
  33. Curr Biol. 2012 Jan 10;22(1):83-90 [PMID: 22197244]
  34. Biol Rev Camb Philos Soc. 2000 Nov;75(4):503-18 [PMID: 11117199]

Word Cloud

Created with Highcharts 10.0.0sticklebackmorphotypesnicheBalticcoastalhabitatswatersgreaterpopulationSeaplatedsegregationhabitatshallowcontributepersistencechangethreespinegroupsresourceecosystemtwodeeperproportioncompletelybiomassvegetationIntraspecificdifferentiationcanchangingenvironmentsFollowingdeclineslargepredatoryfisheutrophicationclimatemajorincreaseabundanceTwomorphotypedifferentlevelsbodyarmor-completelyincompletelyplated-arecommonsimilarshapesizemorphologicalcharacteristicsliveoneapparentlyintermixedVariationuseindicatedegreeaidfaceenvironmentalassesswhetherexhibitassociatedand/orexploitationpredatoravoidanceconductedfieldsurveybioticabioticstructuretypeswithinbaysSea:centralnear-shorepiscivorousfish:perchpikecoveragehabitat-formingresultssuggestmaycontinuedsuccessPredatorinfluencedistributionperturbationecotypicdivergencespecializationintraspecificvariation

Similar Articles

Cited By