Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors.

Luca Angius, Benjamin Pageaux, Antonio Crisafulli, James Hopker, Samuele Maria Marcora
Author Information
  1. Luca Angius: Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK. luca.angius@northumbria.ac.uk. ORCID
  2. Benjamin Pageaux: École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médicine, Université de Montréal, Montréal, QC, Canada. ORCID
  3. Antonio Crisafulli: The Department of Medical Sciences, Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy. ORCID
  4. James Hopker: Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK. ORCID
  5. Samuele Maria Marcora: Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK. ORCID

Abstract

PURPOSE: This study investigated the effect of ischemic preconditioning (IP) on metaboreflex activation following dynamic leg extension exercise in a group of healthy participants.
METHOD: Seventeen healthy participants were recruited. IP and SHAM treatments (3 × 5 min cuff occlusion at 220 mmHg or 20 mmHg, respectively) were administered in a randomized order to the upper part of exercising leg's thigh only. Muscle pain intensity (MP) and pain pressure threshold (PPT) were monitored while administrating IP and SHAM treatments. After 3 min of leg extension exercise at 70% of the maximal workload, a post-exercise muscle ischemia (PEMI) was performed to monitor the discharge group III/IV muscle afferents via metaboreflex activation. Hemodynamics were continuously recorded. MP was monitored during exercise and PEMI.
RESULTS: IP significantly reduced mean arterial pressure compared to SHAM during metaboreflex activation (mean ± SD, 109.52 ± 7.25 vs. 102.36 ± 7.89 mmHg) which was probably the consequence of a reduced end diastolic volume (mean ± SD, 113.09 ± 14.25 vs. 102.42 ± 9.38 ml). MP was significantly higher during the IP compared to SHAM treatment, while no significant differences in PPT were found. MP did not change during exercise, but it was significantly lower during the PEMI following IP (5.10 ± 1.29 vs. 4.00 ± 1.54).
CONCLUSION: Our study demonstrated that IP reduces hemodynamic response during metaboreflex activation, while no effect on MP and PPT were found. The reduction in hemodynamic response was likely the consequence of a blunted venous return.

Keywords

References

  1. Abraham TP, Dimaano VL, Hsin-Yueh L (2007) Role of tissue doppler and strain echocardiography in current clinical practice. Circulation 116:2597–2609. https://doi.org/10.1161/CIRCULATIONAHA.106.647172 [DOI: 10.1161/CIRCULATIONAHA.106.647172]
  2. Addison PD, Neligan PC, Ashrafpour H et al (2003) Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol-Heart Circ Physiol 285:H1435–H1443. https://doi.org/10.1152/ajpheart.00106.2003 [DOI: 10.1152/ajpheart.00106.2003]
  3. Amann M, Runnels S, Morgan DE et al (2011) On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. J Physiol 589:3855–3866. https://doi.org/10.1113/jphysiol.2011.209353 [DOI: 10.1113/jphysiol.2011.209353]
  4. Andreas M, Schmid AI, Keilani M et al (2011) Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. J Cardiovasc Magn Reson 13:32 [DOI: 10.1186/1532-429X-13-32]
  5. Ansdell P, Brownstein CG, Škarabot J et al (2019) Sex differences in fatigability and recovery relative to the intensity–duration relationship. J Physiol 597:5577–5595. https://doi.org/10.1113/JP278699 [DOI: 10.1113/JP278699]
  6. Armstrong RB (1984) Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc 16:529–538 [PMID: 6392811]
  7. Bailey TG, Jones H, Gregson W et al (2012) Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc 44:2084–2089. https://doi.org/10.1249/MSS.0b013e318262cb17 [DOI: 10.1249/MSS.0b013e318262cb17]
  8. Bastos BG, Williamson JW, Harrelson T, Nóbrega ACLD (2000) Left ventricular volumes and hemodynamic responses to postexercise ischemia in healthy humans. Med Sci Sports Exerc 32:1114–1118. https://doi.org/10.1097/00005768-200006000-00012 [DOI: 10.1097/00005768-200006000-00012]
  9. Borg G (1998) Borg’s perceived exertion and pain scales. In: Human Kinetics. ISBN: 0880116234 9780880116237
  10. Boushel R (2010) Muscle metaboreflex control of the circulation during exercise: muscle metaboreflex during exercise. Acta Physiol 199:367–383. https://doi.org/10.1111/j.1748-1716.2010.02133.x [DOI: 10.1111/j.1748-1716.2010.02133.x]
  11. Cameron JD, Stevenson I, Reed E et al (2004) Accuracy of automated auscultatory blood pressure measurement during supine exercise and treadmill stress electrocardiogram-testing. Blood Press Monit 9:269–275 [DOI: 10.1097/00126097-200410000-00007]
  12. Caru M, Levesque A, Lalonde F, Curnier D (2019) An overview of ischemic preconditioning in exercise performance: a systematic review. J Sport Health Sci 8:355–369. https://doi.org/10.1016/j.jshs.2019.01.008 [DOI: 10.1016/j.jshs.2019.01.008]
  13. Charloux A, Lonsdorfer-Wolf E, Richard R et al (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 82:313–320 [DOI: 10.1007/s004210000226]
  14. Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic Press, London [DOI: 10.4324/9780203771587]
  15. Cook DB, O’Connor PJ, Eubanks SA et al (1997) Naturally occurring muscle pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc 29:999–1012 [DOI: 10.1097/00005768-199708000-00004]
  16. Crisafulli A (2017) The impact of cardiovascular diseases on cardiovascular regulation during exercise in humans: studies on metaboreflex activation elicited by the post-exercise muscle ischemia method. Curr Cardiol Rev 13:293–300. https://doi.org/10.2174/1573403X13666170804165928 [DOI: 10.2174/1573403X13666170804165928]
  17. Crisafulli A, Carta C, Melis F et al (2004a) Haemodynamic responses following intermittent supramaximal exercise in athletes. Exp Physiol 89:665–674. https://doi.org/10.1113/expphysiol.2004.027946 [DOI: 10.1113/expphysiol.2004.027946]
  18. Crisafulli A, Melis F, Tocco F et al (2004b) Exercise-induced and nitroglycerin-induced myocardial preconditioning improves hemodynamics in patients with angina. Am J Physiol Heart Circ Physiol 287:H235-242. https://doi.org/10.1152/ajpheart.00989.2003 [DOI: 10.1152/ajpheart.00989.2003]
  19. Crisafulli A, Salis E, Pittau G et al (2006) Modulation of cardiac contractility by muscle metaboreflex following efforts of different intensities in humans. Am J Physiol Heart Circ Physiol 291:H3035-3042. https://doi.org/10.1152/ajpheart.00221.2006 [DOI: 10.1152/ajpheart.00221.2006]
  20. Crisafulli A, Milia R, Lobina A et al (2008) Haemodynamic effect of metaboreflex activation in men after running above and below the velocity of the anaerobic threshold. Exp Physiol 93:447–457. https://doi.org/10.1113/expphysiol.2007.041863 [DOI: 10.1113/expphysiol.2007.041863]
  21. Crisafulli A, Milia R, Vitelli S et al (2009) Hemodynamic responses to metaboreflex activation: insights from spinal cord-injured humans. Eur J Appl Physiol 106:525–533. https://doi.org/10.1007/s00421-009-1045-2 [DOI: 10.1007/s00421-009-1045-2]
  22. Crisafulli A, Piras F, Filippi M et al (2011a) Role of heart rate and stroke volume during muscle metaboreflex-induced cardiac output increase: differences between activation during and after exercise. J Physiol Sci JPS 61:385–394. https://doi.org/10.1007/s12576-011-0163-x [DOI: 10.1007/s12576-011-0163-x]
  23. Crisafulli A, Tangianu F, Tocco F et al (2011b) Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol Bethesda Md 111:530–536. https://doi.org/10.1152/japplphysiol.00266.2011 [DOI: 10.1152/japplphysiol.00266.2011]
  24. de Cruz RSO, Aguiar RA, Turnes T et al (2015) Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol Bethesda Md 119:961–967. https://doi.org/10.1152/japplphysiol.00498.2015 [DOI: 10.1152/japplphysiol.00498.2015]
  25. de Cruz RSO, Pereira KL, Lisbôa FD, Caputo F (2016) Could small-diameter muscle afferents be responsible for the ergogenic effect of limb ischemic preconditioning? J Appl Physiol Bethesda Md. https://doi.org/10.1152/japplphysiol.00662.2016 [DOI: 10.1152/japplphysiol.00662.2016]
  26. de Morree HM, Klein C, Marcora SM (2012) Perception of effort reflects central motor command during movement execution. Psychophysiology 49:1242–1253. https://doi.org/10.1111/j.1469-8986.2012.01399.x [DOI: 10.1111/j.1469-8986.2012.01399.x]
  27. De Martino E, Petrini L, Schabrun S, Graven-Nielsen T (2018) Cortical somatosensory excitability is modulated in response to several days of muscle soreness. J Pain 19:1296–1307. https://doi.org/10.1016/j.jpain.2018.05.004 [DOI: 10.1016/j.jpain.2018.05.004]
  28. De Pauw K, Roelands B, Cheung SS et al (2013) Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform 8:111–122. https://doi.org/10.1123/ijspp.8.2.111 [DOI: 10.1123/ijspp.8.2.111]
  29. Estrada JA, Kaufman MP (2018) µ-Opioid receptors inhibit the exercise pressor reflex by closing N-type calcium channels but not by opening GIRK channels in rats. Am J Physiol Regul Integr Comp Physiol 314:R693–R699. https://doi.org/10.1152/ajpregu.00380.2017 [DOI: 10.1152/ajpregu.00380.2017]
  30. Fisher JP, Seifert T, Hartwich D et al (2010) Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans: muscle metaboreflex control of heart rate. J Physiol 588:1117–1127. https://doi.org/10.1113/jphysiol.2009.185470 [DOI: 10.1113/jphysiol.2009.185470]
  31. Fisher JP, Adlan AM, Shantsila A et al (2013) Muscle metaboreflex and autonomic regulation of heart rate in humans. J Physiol 591:3777–3788. https://doi.org/10.1113/jphysiol.2013.254722 [DOI: 10.1113/jphysiol.2013.254722]
  32. Franz A, Behringer M, Harmsen J-F et al (2018) Ischemic preconditioning blunts muscle damage responses induced by eccentric exercise. Med Sci Sports Exerc 50:109–115. https://doi.org/10.1249/MSS.0000000000001406 [DOI: 10.1249/MSS.0000000000001406]
  33. Gallagher KM, Fadel PJ, Strømstad M et al (2001) Effects of partial neuromuscular blockade on carotid baroreflex function during exercise in humans. J Physiol 533:861–870. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00861.x [DOI: 10.1111/j.1469-7793.2001.t01-1-00861.x]
  34. Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789 [DOI: 10.1152/physrev.2001.81.4.1725]
  35. Gledhill N, Cox D, Jamnik R (1994) Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med Sci Sports Exerc 26:1116–1121 [DOI: 10.1249/00005768-199409000-00008]
  36. Grassi B, Quaresima V (2016) Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective. J Biomed Opt 21:091313. https://doi.org/10.1117/1.JBO.21.9.091313 [DOI: 10.1117/1.JBO.21.9.091313]
  37. Graven-Nielsen T, Mense S, Arendt-Nielsen L (2004) Painful and non-painful pressure sensations from human skeletal muscle. Exp Brain Res 159:273–283. https://doi.org/10.1007/s00221-004-1937-7 [DOI: 10.1007/s00221-004-1937-7]
  38. Grothues F, Moon JC, Bellenger NG et al (2004) Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147:218–223. https://doi.org/10.1016/j.ahj.2003.10.005 [DOI: 10.1016/j.ahj.2003.10.005]
  39. Harms J, Stone AJ, Kaufman MP (2018) Peripheral µ-opioid receptors attenuate the responses of group III and IV afferents to contraction in rats with simulated peripheral artery disease. J Neurophysiol 119:2052–2058. https://doi.org/10.1152/jn.00034.2018 [DOI: 10.1152/jn.00034.2018]
  40. Hartwich D, Doreen H, Dear WE et al (2011) Effect of muscle metaboreflex activation on spontaneous cardiac baroreflex sensitivity during exercise in humans. J Physiol 589:6157–6171. https://doi.org/10.1113/jphysiol.2011.219964 [DOI: 10.1113/jphysiol.2011.219964]
  41. Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386. https://doi.org/10.1093/cvr/cvn114 [DOI: 10.1093/cvr/cvn114]
  42. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. https://doi.org/10.1161/CIRCULATIONAHA.108.805242 [DOI: 10.1161/CIRCULATIONAHA.108.805242]
  43. Incognito AV, Burr JF, Millar PJ (2016) The effects of ischemic preconditioning on human exercise performance. Sports Med Auckl NZ 46:531–544. https://doi.org/10.1007/s40279-015-0433-5 [DOI: 10.1007/s40279-015-0433-5]
  44. Incognito AV, Doherty CJ, Lee JB et al (2017) Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men. Physiol Rep. https://doi.org/10.14814/phy2.13342 [DOI: 10.14814/phy2.13342]
  45. Kaufman MP (2012) The exercise pressor reflex in animals: Group III and IV muscle afferents. Exp Physiol 97:51–58. https://doi.org/10.1113/expphysiol.2011.057539 [DOI: 10.1113/expphysiol.2011.057539]
  46. Kharbanda RK, Mortensen UM, White PA et al (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883. https://doi.org/10.1161/01.cir.0000043806.51912.9b [DOI: 10.1161/01.cir.0000043806.51912.9b]
  47. Kido K, Suga T, Tanaka D et al (2015) Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep 3:e12395. https://doi.org/10.14814/phy2.12395 [DOI: 10.14814/phy2.12395]
  48. Kilding AE, Sequeira GM, Wood MR (2018) Effects of ischemic preconditioning on economy, VO2 kinetics and cycling performance in endurance athletes. Eur J Appl Physiol 118:2541–2549. https://doi.org/10.1007/s00421-018-3979-8 [DOI: 10.1007/s00421-018-3979-8]
  49. Leal AK, Yamauchi K, Kim J et al (2013) Peripheral δ-opioid receptors attenuate the exercise pressor reflex. Am J Physiol-Heart Circ Physiol 305:H1246–H1255. https://doi.org/10.1152/ajpheart.00116.2013 [DOI: 10.1152/ajpheart.00116.2013]
  50. Linton SJ, Shaw WS (2011) Impact of psychological factors in the experience of pain. Phys Ther 91:700–711. https://doi.org/10.2522/ptj.20100330 [DOI: 10.2522/ptj.20100330]
  51. Lintz JA, Dalio MB, Joviliano EE, Piccinato CE (2013) Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta Cir Bras 28:441–446. https://doi.org/10.1590/s0102-86502013000600007 [DOI: 10.1590/s0102-86502013000600007]
  52. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW et al (2005) Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans. J Am Coll Cardiol 46:450–456. https://doi.org/10.1016/j.jacc.2005.04.044 [DOI: 10.1016/j.jacc.2005.04.044]
  53. Mansour Z, Bouitbir J, Charles AL et al (2012) Remote and local ischemic preconditioning equivalently protects rat skeletal muscle mitochondrial function during experimental aortic cross-clamping. J Vasc Surg 55:497-505.e1. https://doi.org/10.1016/j.jvs.2011.07.084 [DOI: 10.1016/j.jvs.2011.07.084]
  54. Marcora SM (2010) Encyclopedia of perception. SAGE Publications, London
  55. Marongiu E, Piepoli M, Milia R et al (2013) Effects of acute vasodilation on the hemodynamic response to muscle metaboreflex. Am J Physiol Heart Circ Physiol 305:H1387-1396. https://doi.org/10.1152/ajpheart.00397.2013 [DOI: 10.1152/ajpheart.00397.2013]
  56. McCord JL, Kaufman MP (2010) Reflex autonomic responses evoked by group III and IV muscle afferents. In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. CRC Press/Taylor and Francis, Boca Raton
  57. Moran D, Epstein Y, Keren G, Laor A, Sherez J, Shapiro Y (1995) Calculation of mean arterial pressure during exercise as a function of heart rate. Appl Human Sci 14:293–295
  58. Mulliri G, Sainas G, Magnani S et al (2016) Ischemic preconditioning reduces hemodynamic response during metaboreflex activation. Am J Physiol-Regul Integr Comp Physiol 310:R777–R787. https://doi.org/10.1152/ajpregu.00429.2015 [DOI: 10.1152/ajpregu.00429.2015]
  59. Nishiyasu T, Ueno H, Nishiyasu M et al (1994) Relationship between mean arterial pressure and muscle cell pH during forearm ischaemia after sustained handgrip. Acta Physiol Scand 151:143–148. https://doi.org/10.1111/j.1748-1716.1994.tb09731.x [DOI: 10.1111/j.1748-1716.1994.tb09731.x]
  60. O’Connor PJ, Cook DB (1999) Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev 27:119–166 [PMID: 10791016]
  61. O’Leary DS (1992) Autonomic mechanisms of muscle metaboreflex control of heart rate. J Appl Physiol Bethesda Md 74:1748–1754. https://doi.org/10.1152/jappl.1993.74.4.1748 [DOI: 10.1152/jappl.1993.74.4.1748]
  62. Oxman T, Arad M, Klein R et al (1997) Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol 273:H1707-1712. https://doi.org/10.1152/ajpheart.1997.273.4.H1707 [DOI: 10.1152/ajpheart.1997.273.4.H1707]
  63. Pageaux B, Angius L, Hopker JG et al (2015) Central alterations of neuromuscular function and feedback from group III–IV muscle afferents following exhaustive high-intensity one-leg dynamic exercise. Am J Physiol Regul Integr Comp Physiol 308:R1008-1020. https://doi.org/10.1152/ajpregu.00280.2014 [DOI: 10.1152/ajpregu.00280.2014]
  64. Piepoli M, Clark AL, Volterrani M et al (1996) Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93:940–952. https://doi.org/10.1161/01.cir.93.5.940 [DOI: 10.1161/01.cir.93.5.940]
  65. Poole DC, Jones AM (2012) Oxygen uptake kinetics. Compr Physiol 2:933–996. https://doi.org/10.1002/cphy.c100072 [DOI: 10.1002/cphy.c100072]
  66. Ray CA, Carter JR (2007) Central modulation of exercise-induced muscle pain in humans. J Physiol 585:287–294. https://doi.org/10.1113/jphysiol.2007.140509 [DOI: 10.1113/jphysiol.2007.140509]
  67. Riksen NP, Smits P, Rongen GA (2004) Ischaemic preconditioning: from molecular characterisation to clinical application–part I. Neth J Med 62:353–363 [PMID: 15683090]
  68. Roberto S, Marongiu E, Pinna M et al (2012) Altered hemodynamics during muscle metaboreflex in young type 1 diabetes patients. J Appl Physiol Bethesda Md 113:1323–1331. https://doi.org/10.1152/japplphysiol.00280.2012 [DOI: 10.1152/japplphysiol.00280.2012]
  69. Rogers G, Oosthuyse T (2000) A comparison of the indirect estimate of mean arterial pressure calculated by the conventional equation and calculated to compensate for a change in heart rate. Int J Sports Med 21:90–95
  70. Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol Bethesda Md 69:407–418
  71. Saito T, Komiyama T, Aramoto H et al (2004) Ischemic preconditioning improves oxygenation of exercising muscle in vivo. J Surg Res 120:111–118. https://doi.org/10.1016/j.jss.2003.12.021 [DOI: 10.1016/j.jss.2003.12.021]
  72. Schabrun SM, Christensen SW, Mrachacz-Kersting N, Graven-Nielsen T (2016) Motor cortex reorganization and impaired function in the transition to sustained muscle pain. Cereb Cortex N Y N 26:1878–1890. https://doi.org/10.1093/cercor/bhu319 [DOI: 10.1093/cercor/bhu319]
  73. Schultz JE, Rose E, Yao Z, Gross GJ (1995) Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol-Heart Circ Physiol 268:H2157–H2161. https://doi.org/10.1152/ajpheart.1995.268.5.H2157 [DOI: 10.1152/ajpheart.1995.268.5.H2157]
  74. Sidhu SK, Cresswell AG, Carroll TJ (2013) Corticospinal responses to sustained locomotor exercises: moving beyond single-joint studies of central fatigue. Sports Med Auckl NZ 43:437–449. https://doi.org/10.1007/s40279-013-0020-6 [DOI: 10.1007/s40279-013-0020-6]
  75. Siebenmann C, Rasmussen P, Sørensen H et al (2015) Cardiac output during exercise: a comparison of four methods. Scand J Med Sci Sports 25:e20-27. https://doi.org/10.1111/sms.12201 [DOI: 10.1111/sms.12201]
  76. Smith LL (1991) Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc 23:542–551 [PMID: 2072832]
  77. Spranger MD, Sala-Mercado JA, Coutsos M et al (2013) Role of cardiac output versus peripheral vasoconstriction in mediating muscle metaboreflex pressor responses: dynamic exercise versus postexercise muscle ischemia. Am J Physiol-Regul Integr Comp Physiol 304:R657–R663. https://doi.org/10.1152/ajpregu.00601.2012 [DOI: 10.1152/ajpregu.00601.2012]
  78. Tanaka K, Yoshimura T, Sumida S et al (1986) Transient responses in cardiac function below, at, and above anaerobic threshold. Eur J Appl Physiol 55:356–361. https://doi.org/10.1007/BF00422733 [DOI: 10.1007/BF00422733]
  79. Tapuria N, Kumar Y, Habib MM et al (2008) Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res 150:304–330. https://doi.org/10.1016/j.jss.2007.12.747 [DOI: 10.1016/j.jss.2007.12.747]
  80. Thomas S, Reading J, Shephard RJ (1992) Revision of the physical activity readiness questionnaire (PAR-Q). Can J Sport Sci 17:338–345
  81. Warburton DE, Haykowsky MJ, Quinney HA et al (1999) Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part I: conventional techniques. Sports Med Auckl NZ 27:23–41 [DOI: 10.2165/00007256-199927010-00003]
  82. Watanabe K, Ichinose M, Fujii N et al (2010) Individual differences in the heart rate response to activation of the muscle metaboreflex in humans. Am J Physiol-Heart Circ Physiol 299:H1708–H1714. https://doi.org/10.1152/ajpheart.00255.2010 [DOI: 10.1152/ajpheart.00255.2010]
  83. Wiggins CC, Constantini K, Paris HL et al (2019) Ischemic preconditioning, O2 kinetics, and performance in normoxia and hypoxia. Med Sci Sports Exerc 51:900–911. https://doi.org/10.1249/MSS.0000000000001882 [DOI: 10.1249/MSS.0000000000001882]
  84. Wyss CR, Ardell JL, Scher AM, Rowell LB (1983) Cardiovascular responses to graded reductions in hindlimb perfusion in exercising dogs. Am J Physiol 245:H481-486. https://doi.org/10.1152/ajpheart.1983.245.3.H481 [DOI: 10.1152/ajpheart.1983.245.3.H481]
  85. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151. https://doi.org/10.1152/physrev.00009.2003 [DOI: 10.1152/physrev.00009.2003]

MeSH Term

Adult
Energy Metabolism
Female
Healthy Volunteers
Hemodynamics
Humans
Ischemic Preconditioning
Knee Joint
Male
Muscle, Skeletal
Myalgia
Pain Measurement
Reflex

Word Cloud

Created with Highcharts 10.0.0IPmetaboreflexMPactivationexerciseSHAMpreconditioningPPTmusclePEMIsignificantlyvsresponsestudyeffectfollowinglegextensiongrouphealthyparticipantstreatmentspainpressuremonitoredreducedcomparedmean ± SD25102consequencefoundreduceshemodynamicIschemicPURPOSE:investigatedischemicdynamicMETHOD:Seventeenrecruited3 × 5 mincuffocclusion220 mmHg20 mmHgrespectivelyadministeredrandomizedorderupperpartexercisingleg'sthighMuscleintensitythresholdadministrating3 min70%maximalworkloadpost-exerciseischemiaperformedmonitordischargeIII/IVafferentsviaHemodynamicscontinuouslyrecordedRESULTS:meanarterial10952 ± 736 ± 789 mmHgprobablyenddiastolicvolume11309 ± 1442 ± 938 mlhighertreatmentsignificantdifferenceschangelower510 ± 129400 ± 154CONCLUSION:demonstratedreductionlikelybluntedvenousreturnkneeextensorsAfferentfeedbackExerciseMetaboreflexPainPerformance

Similar Articles

Cited By