Mycoremediation potential of Aspergillus ochraceus NRRL 3174.

Sezen Bilen Ozyurek, Nermin Hande Avcioglu, Isil Seyis Bilkay
Author Information
  1. Sezen Bilen Ozyurek: Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey. sbilen@hacettepe.edu.tr. ORCID
  2. Nermin Hande Avcioglu: Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey.
  3. Isil Seyis Bilkay: Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey.

Abstract

Mycoremediation is an important process that targets the removal of petroleum hydrocarbons by fungi. Fungi have advantages with their extensive enzymatic systems, rapid adaptation to toxic organic pollutants, and to adverse environmental conditions. In this study, the colorimetric method was used for the preliminary investigation of petroleum degradation with ten fungal strains. Petroleum degradation ability of spore suspension, live biomass (fungal pellet and disc) and cell-free culture supernatant of the potent A. ochraceus strain were investigated by gravimetric analysis. It was found that the fungal disc (94%) was more successful than the spore suspension (87%) in petroleum degradation under physiological conditions determined as pH:5.0, 1% of petroleum concentration, 5% (v/v) of inoculum concentration (with spore suspension) and 1 g/100 mL of inoculum amount (with fungal disc) and 7 days of the incubation period. The degradation rate constant and half-life period of spore suspension were calculated as 0.291 day and t = 0.340 and of the fungal disc were 0.401 day and t = 0.247. Although, 7.5% and 10% (v/v) concentration of cell-free culture supernatant achieved more than 80% petroleum removal, it was not as effective as a fungal disc. According to gas chromatography/mass spectrometry analysis, the fungal disc of A. ochraceus strain degraded long-chain n-alkanes such as C and C more effectively than n-alkanes in the range of C-C. The fact that the A. ochraceus NRRL 3174 strain has a high petroleum degradation capacity as well as being a potent biosurfactant producer will provide a different perspective to advanced mycoremediation studies.

Keywords

References

  1. Abruscia C, Marquinaa D, Del Amob A, Catalina F (2007) Biodegradation of cinematographic gelation emülsiyon by bacteria and filamentous fungi using indirect impedance technique. Int Biodeterior Biodegrad 60:137–143. https://doi.org/10.1016/j.ibiod.2007.01.005 [DOI: 10.1016/j.ibiod.2007.01.005]
  2. Adnan M, Alshammari E, Ashraf SA, Patel K, Lad K, Patel M (2018) Physiological and molecular characterization of biosurfactant producing endophytic fungi xylaria regalis from the cones of thuja plicata as a potent plant growth promoter with its potential application. BioMed Res Int 2018:1–11. https://doi.org/10.1155/2018/7362148 [DOI: 10.1155/2018/7362148]
  3. Agrawal N, Verma P, Shahi SK (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresources Bioprocess 5(1):11–20. https://doi.org/10.1186/s40643-018-0197-5 [DOI: 10.1186/s40643-018-0197-5]
  4. AI-Jawhari IH (2015) Ability of some fungi isolated from a sediment of Suq-Al Shuyukh marshes on biodegradation of crude oil. Int J Curr Microbiol Appl Sci 4:19–32
  5. Ajani OA, Ogunleye OO, Hamed JO (2017) Enhanced bioremediation of soil contaminated with anthracene: optimization of biostimulant levels using response surface methodology. J App Nat Sci 2:7–30
  6. Al-Dhabaan FA (2021) Mycoremediation of crude oil contaminated soil by specific fungi isolated from Dhahran in Saudi Arabia. Saudi J Biol Sci 28:73–77. https://doi.org/10.1016/j.sjbs.2020.08.033 [DOI: 10.1016/j.sjbs.2020.08.033]
  7. Al-Hawash A, Alkooranee JT, Abbood HA, Zhang J, Sun J, Zhang X, Ma F (2018a) Isolation and characterization of two-crude oil degrading fungi strains from Rumila oil field. Biotechnol Rep 17:104–109. https://doi.org/10.1016/j.btre.2017.12.006 [DOI: 10.1016/j.btre.2017.12.006]
  8. Al-Hawash AB, Zhang X, Ma F (2018b) Removal and biodegradation of different petroleum hydrocarbons using filamentous fungus Aspergillus sp. RFC-1. Microbiologyopen 8(1):1–14. https://doi.org/10.1002/mbo3.619
  9. Asemoloye MD, Ahmad R, Jonathan SG (2017) Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere 184:1–12. https://doi.org/10.1016/j.chemosphere.2017.07.158 [DOI: 10.1016/j.chemosphere.2017.07.158]
  10. Asemoloye MD, Tosi S, Daccò C, Wang X, Xu S, Marchisio MA, Gao W, Jonathan SG, Pecoraro L (2020) Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from nigerian crude oil-polluted sites. Microorganisms 8:2–19. https://doi.org/10.3390/microorganisms8121912 [DOI: 10.3390/microorganisms8121912]
  11. Balaji V, Aruzlazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 35:1–9
  12. Banerjee AAR, Dutta S, Mondal S (2016) Bioremediation of hydrocarbon a review. Int J Adv Res 4:1303–1313. https://doi.org/10.21474/IJAR01/734
  13. Barnes NM, Khodse VB, Lotlikar NP, Meena RM, Damare SR (2018) Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech 8:1–10. https://doi.org/10.1007/s13205-017-1043-8 [DOI: 10.1007/s13205-017-1043-8]
  14. Benguenab A, Chibani A (2020) Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol Sin (In Press). https://doi.org/10.1016/j.chnaes.2020.10.008 [DOI: 10.1016/j.chnaes.2020.10.008]
  15. Bennet JW, Wunch KG, Faison BD (2002) Use of fungi biodegradation. Manual of Environ Microbiol, 2nd ed., ASM Press, Washington, 960–971
  16. Bento FM, Beech IB, Gaylarde CC, Englert GE, Muller IL (2005) Degradation and corrosive activities of fungi in a diesel–mild steel–aqueous system. World J Microb Biotechnol 21:135–142. https://doi.org/10.1007/s11274-004-3042-2 [DOI: 10.1007/s11274-004-3042-2]
  17. Bilen Ozyurek S, Avcioglu NH (2020a) The role of Aspergillus parasiticus NRRL:3386 strain on petroleum biodegradation and biosorption processes. Eur J Biol 79:144–150. https://doi.org/10.26650/EurJBiol.2020.0099
  18. Bilen Ozyurek S, Seyis Bilkay I (2020) Comparison of petroleum biodegradation efficiencies of three different bacterial consortia determined in petroleum-contaminated waste mud pit. SN Appl Sci 2020:272. https://doi.org/10.1007/s42452-020-2044-5 [DOI: 10.1007/s42452-020-2044-5]
  19. Bodour AA, Miller-Maier RM (1998) Application of modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Method 32:273–280. https://doi.org/10.1016/S0167-7012(98)00031-1 [DOI: 10.1016/S0167-7012(98)00031-1]
  20. Covino S, D’Annibale A, Stazi SR, Cajthaml T, Čvančarová M, Stella T, Petruccioli M (2015) Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Sci Total Environ 505:545–554. https://doi.org/10.1016/j.scitotenv.2014.10.027 [DOI: 10.1016/j.scitotenv.2014.10.027]
  21. Deive FJ, Carvalho E, Pastrana L, Rúa ML, Longo MA, Sanroman MA (2009) Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol 100:3630–3637. https://doi.org/10.1016/j.biortech.2009.02.053 [DOI: 10.1016/j.biortech.2009.02.053]
  22. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264. https://doi.org/10.1007/s12088-016-0584-6 [DOI: 10.1007/s12088-016-0584-6]
  23. Drevinskas T, Mickienė R, Maruška A, Stankevičius M, Tiso N, Mikašauskaitė J, Ragažinskienė O, Levišauskas D, Bartkuvienė V, Snieškienė V, Stankevičienė A, Polcaro C, Galli E, Donati E, Tekorius T, Kornyšova O, Kaškonienė V (2016) Downscaling the in vitro test of fungal bioremediation of polycyclic aromatic hydrocarbons:methodological approach. Anal Bioanal Chem 408(4):1043–1053. https://doi.org/10.1007/s00216-015-9191-3 [DOI: 10.1007/s00216-015-9191-3]
  24. El-Hanafy AA, Anwar Y, Mohamed SA, Al-Garni SMS, Sabir JS, Zinadah QAA, Ahmed MM (2015) Isolation and molecular identification of two fungal strains capable of degrading hydrocarbon contaminants on Saudi Arabian environment. Int J Biol Biomol Agric Food Biotechnol Eng 9:1142–1145
  25. El-Hanafy AAEM, Anwar Y, Sabir JS, Mohamed SA, Al-Garni SM, Zinadah OAA, Ahmed MM (2017) Characterization of native fungi responsible for degrading crude oil from the coastal area of Yanbu, Saudi Arabia. Biotechnol Biotechnol Equip 31:105–111. https://doi.org/10.1080/13102818.2016.1249407 [DOI: 10.1080/13102818.2016.1249407]
  26. Elshafie A, AlKindi AY, Al-Busaidi S, Bakheit C, Albahry SN (2007) Biodegradation of crude oil and n-alkanes by fungi isolated from Oman. Mar Pollut Bull 54:1692–1696. https://doi.org/10.1016/j.marpolbul.2007.06.006 [DOI: 10.1016/j.marpolbul.2007.06.006]
  27. Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms, in: Biotechnology. Vol. 11b, Environ Process (-Rehm H-J, Reed G (eds.), Wiley-VCH, Weinheim, 145–167
  28. Fu W, Xu M, Sun K, Hu L, Cao W, Dai C, Jia Y (2018) Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere 203:160–169. https://doi.org/10.1016/j.chemosphere.2018.03.164 [DOI: 10.1016/j.chemosphere.2018.03.164]
  29. Fuad A, Mohamed M, Sarfaraz H (2015) Biodegradation of petroleum oil by mangrove fungi from Saudi Red Sea Coast. Res J Biotechnol 10:75–83
  30. Govarthanan M, Fuzisawa S, Hosogai T, Chang Y-C (2017) Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv 7(34):20716–20723. https://doi.org/10.1039/C6RA28687A
  31. Hamad AA, Moubasher HA, Moustafa YM, Mohamed NH, Adb-el rhim EH, (2021) Petroleum hydrocarbon bioremediation using native fungal isolates and consortia. Sci World J 2021:1–13. https://doi.org/10.1155/2021/6641533 [DOI: 10.1155/2021/6641533]
  32. Hanson K, Desai JD, Desai AJ (1993) A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Tech 7:745–748. https://doi.org/10.1007/BF00152624 [DOI: 10.1007/BF00152624]
  33. Harms H, Schlosser D, Wick LY (2011) Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. https://doi.org/10.1038/nrmicro2519 [DOI: 10.1038/nrmicro2519]
  34. Hassanshahian M (2014) Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Mar Pollut Bull 86:361–366. https://doi.org/10.1016/j.marpolbul.2014.06.043 [DOI: 10.1016/j.marpolbul.2014.06.043]
  35. Hassanshahian M, Tebyanian H, Cappello S (2012) Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Poll Bull 64(7):1386–1391. https://doi.org/10.1016/j.marpolbul.2012.04.020 [DOI: 10.1016/j.marpolbul.2012.04.020]
  36. Islam NF (2017) Bioprospecting fungal diversity from crude oil infiltrate soil of Assam, India’s Northeast. Trop Plant Res 4:319–329. https://doi.org/10.22271/tpr.2017.v4.i2.042
  37. Jeong MS, Lee YW, Lee HS, Lee KS (2021) Simulation-based optimization of microbial enhanced oil recovery with a model integrating temperature, pressure, and salinity effects. Energies 14:1–20. https://doi.org/10.3390/en14041131 [DOI: 10.3390/en14041131]
  38. Joutey NT, Bahafid W, Sayel H, Ghachtouli NE (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms, Biodegradation-Life of Science, (eds: Chamy R, Rozenkranz F), Intech, 289–320
  39. Khan A, Butt A (2016) Biosurfactants and their potential applications for microbes and mankind: An overview. Middle East J Bus 11:9–18. https://doi.org/10.5742/MEJB.2015.92757 [DOI: 10.5742/MEJB.2015.92757]
  40. Kirtzel J, Ueberschaar N, Deckert-Gaudig T, Krause K, Deckert V, Gadd GM, Kothe E (2020) Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete Schizophyllum commune. Environ Microbiol 22(4):1535–1546. https://doi.org/10.1111/1462-2920.14749 [DOI: 10.1111/1462-2920.14749]
  41. Kota MF, Hussaini A, Zulkharnain A, Roslan HA (2014) Bioremediation of crude oil by different fungal genera. Asian J Plant Biol 2:11–18
  42. Kumari B, Singh SN, Singh DP (2016) Induced degradation of crude oil mediated by microbial augmentation and bulking agents. Int J Environ Sci Technol 13:1029–1042. https://doi.org/10.1007/s13762-016-0934-2 [DOI: 10.1007/s13762-016-0934-2]
  43. Li Q, Liu J, Gadd GM (2020) Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. App Microbiol Biotechnol 104:8999–9008. https://doi.org/10.1007/s00253-020-10854-y [DOI: 10.1007/s00253-020-10854-y]
  44. Lima Souza HM, Sette LD, Da Mota AJ, Nascimento Neto JF, Rodrigues A, Oliveira TB, Oliveira FM, Oliveira LA, Santos Barroso H, Zanotto SP (2016) Filamentous fungi isolates of contaminated sediment in the Amazon region with the potential for benzo (a) pyrene degradation. Water Air Soil Pollut 227:1–13. https://doi.org/10.1007/s11270-016-3101-y [DOI: 10.1007/s11270-016-3101-y]
  45. Maddela NR, Scalvenzi L, Pérez M, Montero C, Gooty JM (2015) Efficiency of indigenous filamentous fungi for biodegradation of petroleum hydrocarbons in medium and soil: laboratory study from Ecuador. Bull Environ Contam Toxicol 95:385–394. https://doi.org/10.1007/s00128-015-1605-6 [DOI: 10.1007/s00128-015-1605-6]
  46. Mahjoubi M, Jaouani A, Guesmi A, Amor SB, Jouini, A, Cherif H, Najjari A, Boudabous A, Koubaa N, Cherif A (2013) Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. New Biotechnol 30:723–733. https://doi.org/10.1016/j.nbt.2013.03.004 [DOI: 10.1016/j.nbt.2013.03.004]
  47. Maletić S, Dalmacija B, Rončević S, Agbaba J, Petrović O (2009) Degradation kinetics of an aged hydrocarbon-contaminated soil. Water Air Soil Pollut 202:149–159. https://doi.org/10.1007/s11270-008-9965-8 [DOI: 10.1007/s11270-008-9965-8]
  48. Marinescu M, Dumitru M, Lacatusu A (2009) Biodegradation of petroleum hydrocarbons in artificial polluted soil. Res J Agric Sci 41(157):162
  49. Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375. https://doi.org/10.1016/j.micres.2009.08.001 [DOI: 10.1016/j.micres.2009.08.001]
  50. Odili UC, Ibrahim FB, Shaibu-Imodagbe EM, Atta HI (2020) Optimization of crude oil biodegradation of fungi isolated from refinery effluent site using response-surface methodology. Niger J Technol Dev 17:257–268. https://doi.org/10.4314/njtd.v17i4.3 [DOI: 10.4314/njtd.v17i4.3]
  51. Okoh AI (2006) Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev 1:38–50
  52. Okougbo AE, De N, Bello YM (2016) Biodegradation of crude oil, refinery effluent and some petroleum components by penicillium sp. and mortierella sp. isolated from oil contaminated soil in auto mechanic workshops. 3rd International Conference on African Development Issues 407–412
  53. Olajire AA, Essien JP (2014) Aerobic degradation of petroleum components by microbial consortia. Pet Environ Biotechnol 5:3–22. https://doi.org/10.4172/2157-7463.1000195 [DOI: 10.4172/2157-7463.1000195]
  54. Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K, Rajasekar A (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8:1–14. https://doi.org/10.3389/fmicb.2017.00193 [DOI: 10.3389/fmicb.2017.00193]
  55. Pinedo-Rivilla C, Aleu J, Collado I (2009) Pollutants biodegradation by fungi. Curr Org Chem 13(12):1194–1214. https://doi.org/10.2174/138527209788921774 [DOI: 10.2174/138527209788921774]
  56. Rahman KSM, Thahira-Rahman J, Lakshmanperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85:257–261. https://doi.org/10.1016/S0960-8524(02)00119-0 [DOI: 10.1016/S0960-8524(02)00119-0]
  57. Rani M, Jabali WJT, S, (2020) Isolation and characterization of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens. Front Microbiol 11:1–17. https://doi.org/10.3389/fmicb.2020.00064 [DOI: 10.3389/fmicb.2020.00064]
  58. Salehizadeh H, Mohammadizad S (2009) Microbial enhanced oil recovery using biosurfactant produced by Alcaligenes faecalis. Iran J Biotechnol 7:216–223
  59. Shahaby AF (2014) Assessment mixed culture of Actinomyces and Sacchromyces for biodegradation of complex mineral oil hydrocarbon. Int J Curr Microbiol App Sci 3:401–414
  60. Shi K, Xue J, Xiao X, Qiao Y, Wu Y, Gao Y (2019) Mechanism of degrading petroleum hydrocarbons by compound marine petroleum-degrading bacteria: surface adsorption, cell uptake, and biodegradation. Energ Fuel 33:11373–11379. https://doi.org/10.1021/acs.energyfuels.9b02306 [DOI: 10.1021/acs.energyfuels.9b02306]
  61. Simister RL, Poutasse CM, Thurston AM, Reeve JL, Baker MC, White HK (2015) Degradation of oil by fungi isolated from Gulf of Mexico beaches. Mar Pollut Bull 100:327–333. https://doi.org/10.1016/j.marpolbul.2015.08.029 [DOI: 10.1016/j.marpolbul.2015.08.029]
  62. Steliga T (2012) Role of fungi in biodegradation of petroleum hydrocarbons in drill waste. Pol J Environ Stud 21:471–479
  63. Thion C, Cebron A, Beguiristain T, Leyval C (2012) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegrad 68:28–35. https://doi.org/10.1016/j.ibiod.2011.10.012 [DOI: 10.1016/j.ibiod.2011.10.012]
  64. Tugrul Yucel T (2018) Investigation of some parameters affecting methyl orange removal by Fusarium acuminatum. Braz Arch Biol Technol 61:e18160237. https://doi.org/10.1590/1678-4324-2018160237 [DOI: 10.1590/1678-4324-2018160237]
  65. Ustun Kurnaz S, Buyukgungor H (2016) Bioremediation of total petroleum hydrocarbons in crude oil contaminated soils obtained from southeast Anatolia. Acta Biol Turc 29:57–60
  66. Vanishree M, Thatheyus AJ, Ramya D (2014) Biodegradation of petrol using the fungus Penicillium sp. Sci Int 2:26–31. https://doi.org/10.17311/sciintl.2014.26.31
  67. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037 [DOI: 10.1016/j.biortech.2016.10.037]
  68. Wang H, Xu R, Li F, Qiao J (2010) Zhang, B. Efficient degradation of lube oil by a mixed bacterial consortium. J Environ Sci 22:381–388. https://doi.org/10.1016/S1001-0742(09)60119-4 [DOI: 10.1016/S1001-0742(09)60119-4]
  69. Xu N, Bao M, Sun P, Li Y (2013) Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium. Bioresour Technol 149:22–30. https://doi.org/10.1016/j.biortech.2013.09.024 [DOI: 10.1016/j.biortech.2013.09.024]
  70. Ye JS, Yin H, Qiang J, Peng H, Qin HM, Zhang N, He BY (2011) Biodegradation of anthracene by Aspergillus fumigatus. J Hazard Mater 185:174–181. https://doi.org/10.1016/j.jhazmat.2010.09.015 [DOI: 10.1016/j.jhazmat.2010.09.015]
  71. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347. https://doi.org/10.1016/j.mimet.2003.11.001 [DOI: 10.1016/j.mimet.2003.11.001]
  72. Zhang JH, Xue QH, Gao H, Ma X, Wang P (2016) Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. J Chem Technol Biotechnol 91:865–875. https://doi.org/10.1002/jctb.4650 [DOI: 10.1002/jctb.4650]

Grants

  1. FHD-2019-17719/Hacettepe Üniversitesi

MeSH Term

Alkanes
Aspergillus ochraceus
Biodegradation, Environmental
Hydrocarbons
Petroleum
Soil Pollutants

Chemicals

Alkanes
Hydrocarbons
Petroleum
Soil Pollutants

Word Cloud

Created with Highcharts 10.0.0fungalpetroleumdiscdegradationochraceussporesuspensionstrain0concentrationMycoremediationremovalFungiconditionsPetroleumcell-freeculturesupernatantpotentanalysis5%v/vinoculumperiodt = 0chromatography/massspectrometryn-alkanesCNRRL3174Aspergillusimportantprocesstargetshydrocarbonsfungiadvantagesextensiveenzymaticsystemsrapidadaptationtoxicorganicpollutantsadverseenvironmentalstudycolorimetricmethodusedpreliminaryinvestigationtenstrainsabilitylivebiomasspelletinvestigatedgravimetricfound94%successful87%physiologicaldeterminedpH:51%1 g/100 mLamount7 daysincubationrateconstanthalf-lifecalculated291 day340401 day247Although710%achieved80%effectiveAccordinggasdegradedlong-chaineffectivelyrangeC-CfacthighcapacitywellbiosurfactantproducerwillprovidedifferentperspectiveadvancedmycoremediationstudiespotentialBiodegradationBiosurfactantGas

Similar Articles

Cited By