Introducing artificial intelligence to the radiation early warning system.

Mohammed Al Saleh, Béatrice Finance, Yehia Taher, Rafiqul Haque, Ali Jaber, Nourhan Bachir
Author Information
  1. Mohammed Al Saleh: David Laboratory, University of Versailles (UVSQ), 45 avenue des Etats-Unis, 78035, Versailles, France. mhdalsaleh@gmail.com. ORCID
  2. Béatrice Finance: David Laboratory, University of Versailles (UVSQ), 45 avenue des Etats-Unis, 78035, Versailles, France.
  3. Yehia Taher: David Laboratory, University of Versailles (UVSQ), 45 avenue des Etats-Unis, 78035, Versailles, France.
  4. Rafiqul Haque: Intelligencia R&D, Paris, France.
  5. Ali Jaber: Lebanese University, Rafic Hariri University Campus, Al Hadath, Beirut, Lebanon.
  6. Nourhan Bachir: Lebanese University, Rafic Hariri University Campus, Al Hadath, Beirut, Lebanon.

Abstract

Although radiation level is a serious concern which requires continuous monitoring, many existing systems are designed to perform this task. Radiation early warning system (REWS) is one of these systems which monitor the gamma radiation level in air. Such system requires high manual intervention, depends totally on experts' analysis, and has some shortcomings that can be risky sometimes. In this paper, the approach called RIMI (refining incoming monitored incidents) will be introduced which aims to improve this system while becoming more autonomous with keeping the final decision to the experts. A new method is presented which will help in changing this system to become more intelligent while learning from past incidents of each specific system.

Keywords

References

  1. Alanazi H, Abdullah A, Qureshi K (2017) A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Journal of Medical Systems 41:69. https://doi.org/10.1007/s10916-017-0715-6 [DOI: 10.1007/s10916-017-0715-6]
  2. Arathi M, Govardhan A (2014) Accurate time series classification using shapelets. International Journal of Data Mining & Knowledge Management Process 4:39–47. https://doi.org/10.5121/ijdkp.2014.4204 [DOI: 10.5121/ijdkp.2014.4204]
  3. Barde P, Barde P (2012) What to use to express the variability of data: standard deviation or standard error of mean? Perspectives in Clinical Research 3:113–116. https://doi.org/10.4103/2229-3485.100662 [DOI: 10.4103/2229-3485.100662]
  4. Biegalski S, Shipman G, Mason L, Pickering M, Altman S (2001) Caribbean radiation early warning system (CREWS). Journal of Radioanalytical and Nuclear Chemistry 248:637–642. https://doi.org/10.1023/A%3A1010624224587 [DOI: 10.1023/A%3A1010624224587]
  5. Casanovas R, Morant J, López M, Hernández-Girón I, Batalla E, Salvadó M (2011) Performance of data acceptance criteria over 50 months from an automatic real-time environmental radiation surveillance network. Journal of Environmental Radioactivity 102(8):742–748. https://doi.org/10.1016/j.jenvrad.2011.04.001 [DOI: 10.1016/j.jenvrad.2011.04.001]
  6. Dombrowski H, Bleher M, De Cort M, Dabrowski R, Neumaier S, Stöhlker U (2017) Recommendations to harmonize European early warning dosimetry network systems. Journal of Instrumentation 12:12024. https://doi.org/10.1088/1748-0221/12/12/P12024 [DOI: 10.1088/1748-0221/12/12/P12024]
  7. El Samad O, Baydoun R, Aoun M, Zaidan W, El Jeaid H (2016) Public exposure to radioactivity levels in the Lebanese environment. Environmental Science and Pollution Research 24(2):2010–2018. https://doi.org/10.1007/s11356-016-7911-7 [DOI: 10.1007/s11356-016-7911-7]
  8. Farid M, Prawito SI, Yuniarto A (2017) Design of early warning system for nuclear preparedness case study at Serpong. AIP Conference Proceedings. https://doi.org/10.1063/1.4991171
  9. Ghalwash M, Obradovic Z (2012) Early classification of multivariate temporal observations by extraction of interpretable shapelets. BMC Bioinformatics 13:195–206. https://doi.org/10.1186/1471-2105-13-195 [DOI: 10.1186/1471-2105-13-195]
  10. Guiling L, Wenhe Y, Zongda W (2019) Discovering shapelets with key points in time series classification. Expert Systems with Applications 132:76–86. https://doi.org/10.1016/j.eswa.2019.04.062 [DOI: 10.1016/j.eswa.2019.04.062]
  11. Gujarati D, Porter D (2009) Basic econometrics. McGraw-Hill Irwin, USA
  12. Han J, Kamber M (2006) Data mining concepts and techniques, 2nd edn. Morgan Kaufmann, USA
  13. Hõrrak U, Chen X, Hõrrak K, Rand U, Komsaare K, Vana M, Luts A, Junninen H (2021) The rain induced gamma-radiation dose rate enhancement at Järvselja SMEAR station. EGU General Assembly 2021:EGU21–EGU15644. https://doi.org/10.5194/egusphere-egu21-15644 [DOI: 10.5194/egusphere-egu21-15644]
  14. Huiqing W, Li C, Sun H, Guo Z, Bai Y (2018) Shapelet classification algorithm based on efficient subsequence matching. Data Science Journal 17:1–12. https://doi.org/10.5334/dsj-2018-006 [DOI: 10.5334/dsj-2018-006]
  15. International Atomic Energy Agency (2015) The FukushimaDaiichi accident. IAEA, Vienna
  16. Jelewska A, Krawczak M (2018) The spectrality of nuclear catastrophe: the case of Chernobyl. politics of the machines - art and after. https://doi.org/10.14236/ewic/EVAC18.30
  17. Julazadeh A, Marsousi M, Alirezaie J (2012) Classification based on sparse representation and Euclidian distance. IEEE Visual Communications and Image Processing (VCIP). https://doi.org/10.1109/VCIP.2012.6410815
  18. Kaufmann L, Rousseeuw P (1987) Clustering by means of medoids. data analysis based on the L1-norm and related methods 405-416
  19. Kendall M (1976) Time-series. Charles Griffin, London
  20. Kessler P, Behnke B, Dabrowski R, Dombrowski H, Röttger A, Neumaier S (2018) Novel spectrometers for environmental dose rate monitoring. Journal of Environmental Radioactivity 187:115–121. https://doi.org/10.1016/j.jenvrad.2018.01.020 [DOI: 10.1016/j.jenvrad.2018.01.020]
  21. Kramer A (2019) Russia orders evacuation of village near site of nuclear explosion. The New YorkTimes. https://www.nytimes.com/2019/08/13/world/europe/russia-nuclear-explosion-accident.html. Accessed 13 August 2019
  22. Küçükarslan N, Erdoğan A, Güven A, Gülay Y (2004) Early warning environmental radiation monitoring system. In: Zaidi MK, Mustafaev I (eds) Radiation safety problems in the caspian region. Nato Science Series: IV: Earth and Environmental Sciences, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2378-2_7 [DOI: 10.1007/1-4020-2378-2_7]
  23. Liao T (2005) Clustering time series data – a survey. Pattern Recognition 38(11):1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025 [DOI: 10.1016/j.patcog.2005.01.025]
  24. MacQueen, J (1967) Some methods for classification and analysis of multivariate observations. In: BSMSP 281–297.
  25. Ounacer S, Talhaoui M, Ardchir S, Daif A, Azouazi M (2017) A new architecture for real time data stream processing. International Journal of Advanced Computer Science and Applications 8(11). https://doi.org/10.14569/IJACSA.2017.081106
  26. Pyle D (1999) Data preparation for data mining. Morgan Kaufmann, USA
  27. Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2339530.2339576
  28. Sarda-Espinosa A (2018) Comparing time-series clustering algorithms in r using the dtwclust package. In: Manual of the R package dtwclust
  29. Stöhlker U, Bleher M, Doll H, Dombrowski H, Harms W, Hellmann I, Luff R, Prommer B, Seifert S, Weiler F (2019) The German dose rate monitoring network and implemented data harmonization techniques. Radiation Protection Dosimetry 183(4):405–417. https://doi.org/10.1093/rpd/ncy154 [DOI: 10.1093/rpd/ncy154]
  30. Szegvary T, Conen F, Stöhlker U, Dubois G, Bossew P, Vries G (2007) Mapping terrestrial gamma-dose rate in Europe based on routine monitoring data. Radiation Measurements 42(9):1561–1572. https://doi.org/10.1016/j.radmeas.2007.09.002 [DOI: 10.1016/j.radmeas.2007.09.002]
  31. Tan P, Steinbach M, Kumar V (2005) Introduction to data mining, First edn. Addison Wesley Longman, USA
  32. Tan C, Petitjean F, Keogh E, Webb G (2019) Time series classification for varying length series. Researchgate. https://www.researchgate.net/publication/336411021_Time_series_classification_for_varying_length_series . Accessed 10 October 2019
  33. Thieu D, Toan T, My N, Sy N, Tien V, Mai N, Cuong L (2012) Study, design and construction of an early warning environmental radiation monitoring station. Communications in Physics 22:375–382. https://doi.org/10.15625/0868-3166/22/4/2665 [DOI: 10.15625/0868-3166/22/4/2665]
  34. Wang H, Li C, Sun H, Guo Z, Bai Y (2018) Shapelet classification algorithm based on efficient subsequence matching. Data Science Journal 17:1–12. https://doi.org/10.5334/dsj-2018-006 [DOI: 10.5334/dsj-2018-006]
  35. Zähringer M, Sempau J (1996) The assessment of the representativeness of data from dose rate monitoring stations. Radiation Protection Dosimetry 64:275–288. https://doi.org/10.1093/oxfordjournals.rpd.a031584 [DOI: 10.1093/oxfordjournals.rpd.a031584]

MeSH Term

Artificial Intelligence

Word Cloud

Created with Highcharts 10.0.0systemradiationwarningincidentslevelrequiressystemsRadiationearlyincomingmonitoredwillAlthoughseriousconcerncontinuousmonitoringmanyexistingdesignedperformtaskREWSonemonitorgammaairhighmanualinterventiondependstotallyexperts'analysisshortcomingscanriskysometimespaperapproachcalledRIMIrefiningintroducedaimsimprovebecomingautonomouskeepingfinaldecisionexpertsnewmethodpresentedhelpchangingbecomeintelligentlearningpastspecificIntroducingartificialintelligenceAnomalydetectionClusteringDataanalyticsEarlyPredictionRefining

Similar Articles

Cited By