In Silico Investigation of Phytoconstituents of Medicinal Herb '' Against SARS-CoV-2 by Molecular Docking and Molecular Dynamics Analysis.

Shradha Lakhera, Kamal Devlal, Arabinda Ghosh, Meenakshi Rana
Author Information
  1. Shradha Lakhera: Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, 263139, Uttarakhand, India.
  2. Kamal Devlal: Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, 263139, Uttarakhand, India.
  3. Arabinda Ghosh: Microbiology Division, Department of Botany, Guwahati University, Guwahati, 781014, Assam, India.
  4. Meenakshi Rana: Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, 263139, Uttarakhand, India.

Abstract

Unavailability of treatment for the SARS-CoV-2 virus has raised concern among the population worldwide. This has led to many attempts to find alternative options to prevent the infection of the disease, including focusing on vaccines and drugs. The use of natural products and herbal extracts can be a better option in beating the virus and boosting up immunity. In the present paper, we have done a systematic study of papain-like protease of COVID-19 virus with the chemical constituents of herbal plant . Screening of the pharmacokinetic properties is done with thirty-two phytoconstituents of which help us in selecting the most active components of the plant. After selection molecular docking is performed with Aristololactam (CHNO), Fargesin (CHO), l-asarinin (CHO), Lignans Machilin F (CHO), Piperundecalidine (CHNO), and Pluviatilol (CHO). Molecular dynamic (MD) is also performed with the inhibitor-receptor complex which suggest significant inhibition and a stable complex of I-Asarinin with PL. Docking scores and simulation results suggest that I-Asarinin can act as a potential drug like candidate against COVID-19.

Keywords

References

  1. Aerosol Sci Technol. 2020 Apr 03;0(0):1-4 [PMID: 32308568]
  2. Methods Mol Biol. 2015;1263:243-50 [PMID: 25618350]
  3. Pharmaceuticals (Basel). 2021 Jul 08;14(7): [PMID: 34358081]
  4. Eur Rev Med Pharmacol Sci. 2021 Feb;25(3):1663-1669 [PMID: 33629336]
  5. J Biomol Struct Dyn. 2021 Aug;39(12):4510-4521 [PMID: 32568012]
  6. Eur J Pharmacol. 2021 Jan 15;891:173759 [PMID: 33249077]
  7. J Biomol Struct Dyn. 2021 Oct;39(17):6792-6809 [PMID: 32762511]
  8. Virusdisease. 2021 Dec;32(4):642-656 [PMID: 34226871]
  9. ACS Chem Biol. 2018 Jan 19;13(1):36-44 [PMID: 29202222]
  10. Case Stud Chem Environ Eng. 2021 Dec;4:100105 [PMID: 38620656]
  11. J Ethnopharmacol. 2004 Feb;90(2-3):339-46 [PMID: 15013199]
  12. J Mol Struct. 2021 Mar 5;1227:129390 [PMID: 33041371]
  13. J Chem Inf Model. 2012 Nov 26;52(11):3099-105 [PMID: 23092397]
  14. PLoS One. 2015 Sep 18;10(9):e0138186 [PMID: 26384019]
  15. J Biomol Struct Dyn. 2022 Jan;40(1):389-400 [PMID: 32876538]
  16. J Med Internet Res. 2021 Apr 22;23(4):e26459 [PMID: 33788699]
  17. Clin Pharmacokinet. 2013 Jan;52(1):1-8 [PMID: 23150213]
  18. J Acupunct Meridian Stud. 2011 Jun;4(2):134-40 [PMID: 21704957]
  19. Cells. 2021 Apr 06;10(4): [PMID: 33917481]
  20. Drug Discov Today Technol. 2004 Dec;1(4):337-41 [PMID: 24981612]
  21. J Nat Prod. 2016 Mar 25;79(3):616-28 [PMID: 26900761]
  22. J Med Chem. 2002 Jun 6;45(12):2615-23 [PMID: 12036371]
  23. Nat Rev Drug Discov. 2010 Mar;9(3):215-36 [PMID: 20190787]
  24. Int J Pharm. 2003 Sep 16;263(1-2):113-22 [PMID: 12954186]
  25. Mol Inform. 2021 Jan;40(1):e2000115 [PMID: 32722864]
  26. Molecules. 2018 Jul 25;23(8): [PMID: 30044423]
  27. J Biomol Struct Dyn. 2021 Sep;39(15):5668-5681 [PMID: 32643552]
  28. J Mol Struct. 2021 Mar 15;1228:129461 [PMID: 33100379]
  29. J Biomol Struct Dyn. 2021 Oct;39(16):6265-6280 [PMID: 32705952]
  30. Emerg Microbes Infect. 2021 Dec;10(1):66-80 [PMID: 33327866]
  31. Am J Public Health. 2021 Jun;111(6):1065-1069 [PMID: 33950730]
  32. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  33. Eur J Pharmacol. 2021 Jan 5;890:173705 [PMID: 33137330]
  34. Drug Des Devel Ther. 2016 Oct 03;10:3237-3252 [PMID: 27757014]
  35. Clin Exp Pediatr. 2020 Apr;63(4):119-124 [PMID: 32252141]
  36. Molecules. 2018 Aug 10;23(8): [PMID: 30103417]
  37. J Virol. 2005 Dec;79(24):15189-98 [PMID: 16306590]
  38. Microbiol Aust. 2020 Mar 17;:MA20013 [PMID: 32226946]
  39. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  40. J Cheminform. 2011 Oct 07;3:33 [PMID: 21982300]
  41. Genome. 2021 Jun;64(6):639-653 [PMID: 33320770]
  42. Life Sci. 2020 Jun 15;251:117627 [PMID: 32251634]
  43. Curr Pharm Des. 2021;27(33):3526-3550 [PMID: 33213322]
  44. J Chem Inf Model. 2009 Sep;49(9):2077-81 [PMID: 19702240]
  45. Aust Prescr. 2021 Feb;44(1):19-25 [PMID: 33664546]
  46. J Chromatogr Sci. 2014 Sep;52(8):793-8 [PMID: 23888002]

Word Cloud

Created with Highcharts 10.0.0CHOMolecularSARS-CoV-2virusI-AsarininherbalcandoneCOVID-19plantdockingperformedCHNOcomplexsuggestDockingUnavailabilitytreatmentraisedconcernamongpopulationworldwideledmanyattemptsfindalternativeoptionspreventinfectiondiseaseincludingfocusingvaccinesdrugsusenaturalproductsextractsbetteroptionbeatingboostingimmunitypresentpapersystematicstudypapain-likeproteasechemicalconstituentsScreeningpharmacokineticpropertiesthirty-twophytoconstituentshelpusselectingactivecomponentsselectionmolecularAristololactamFargesinl-asarininLignansMachilinFPiperundecalidinePluviatiloldynamicMDalsoinhibitor-receptorsignificantinhibitionstablePLscoressimulationresultsactpotentialdruglikecandidateSilicoInvestigationPhytoconstituentsMedicinalHerb''DynamicsAnalysisPLproPiperLongum

Similar Articles

Cited By