The Application of Microfluidic Technologies in Aptamer Selection.

Yang Liu, Nijia Wang, Chiu-Wing Chan, Aiping Lu, Yuanyuan Yu, Ge Zhang, Kangning Ren
Author Information
  1. Yang Liu: Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China.
  2. Nijia Wang: Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China.
  3. Chiu-Wing Chan: Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China.
  4. Aiping Lu: Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China.
  5. Yuanyuan Yu: Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China.
  6. Ge Zhang: Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China.
  7. Kangning Ren: Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China.

Abstract

Aptamers are sequences of single-strand oligonucleotides (DNA or RNA) with potential binding capability to specific target molecules, which are increasingly used as agents for analysis, diagnosis, and medical treatment. Aptamers are generated by a selection method named systematic evolution of ligands by exponential enrichment (SELEX). Numerous SELEX methods have been developed for aptamer selections. However, the conventional SELEX methods still suffer from high labor intensity, low operation efficiency, and low success rate. Thus, the applications of aptamer with desired properties are limited. With their advantages of low cost, high speed, and upgraded extent of automation, microfluidic technologies have become promising tools for rapid and high throughput aptamer selection. This paper reviews current progresses of such microfluidic systems for aptamer selection. Comparisons of selection performances with discussions on principles, structure, operations, as well as advantages and limitations of various microfluidic-based aptamer selection methods are provided.

Keywords

References

  1. Biosens Bioelectron. 2010 Mar 15;25(7):1761-6 [PMID: 20061133]
  2. Mech Res Commun. 2009 Jan 1;36(1):92-103 [PMID: 20046897]
  3. Sci Rep. 2016 May 24;6:26139 [PMID: 27217242]
  4. Lab Chip. 2009 May 7;9(9):1206-12 [PMID: 19370238]
  5. Biosens Bioelectron. 2018 Dec 30;122:104-112 [PMID: 30245322]
  6. Anal Chem. 2019 Mar 5;91(5):3367-3373 [PMID: 30740973]
  7. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15373-8 [PMID: 20705898]
  8. Anal Chem. 2017 Jun 20;89(12):6535-6542 [PMID: 28541659]
  9. Biomicrofluidics. 2019 Feb 25;13(1):014114 [PMID: 30867884]
  10. Gene. 1993 Dec 27;137(1):19-24 [PMID: 7506689]
  11. Biochem Biophys Res Commun. 2004 Jan 23;313(4):1004-8 [PMID: 14706642]
  12. Biomol Eng. 2007 Oct;24(4):381-403 [PMID: 17627883]
  13. Anal Chem. 2014 Jul 1;86(13):6572-9 [PMID: 24914856]
  14. Biochemistry. 1995 Apr 25;34(16):5651-9 [PMID: 7537093]
  15. J Immunol. 1996 Jul 1;157(1):221-30 [PMID: 8683119]
  16. Lab Chip. 2014 Jun 21;14(12):2002-13 [PMID: 24820138]
  17. Anal Chem. 2012 Mar 20;84(6):2647-53 [PMID: 22283623]
  18. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11838-43 [PMID: 16873550]
  19. Sci Rep. 2015 Jul 01;5:11347 [PMID: 26126714]
  20. Analyst. 2017 Dec 18;143(1):21-32 [PMID: 29094731]
  21. Biomicrofluidics. 2014 Jul 16;8(4):041501 [PMID: 25379085]
  22. PLoS One. 2011;6(11):e27051 [PMID: 22110600]
  23. PLoS One. 2014 Jun 25;9(6):e100572 [PMID: 24963654]
  24. Int J Mol Sci. 2016 Dec 10;17(12): [PMID: 27973403]
  25. Anal Chem. 2011 Sep 1;83(17):6883-9 [PMID: 21774453]
  26. Issues Emerg Health Technol. 2005 Dec;(76):1-4 [PMID: 16544440]
  27. Nat Med. 2015 Mar;21(3):288-94 [PMID: 25665179]
  28. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):2989-94 [PMID: 19202068]
  29. Biosens Bioelectron. 2018 Jan 15;99:361-367 [PMID: 28800508]
  30. Science. 1990 Aug 3;249(4968):505-10 [PMID: 2200121]
  31. Biosens Bioelectron. 2018 Jun 30;109:206-213 [PMID: 29567565]
  32. Electrophoresis. 2006 Apr;27(7):1303-11 [PMID: 16518777]
  33. SLAS Technol. 2017 Feb;22(1):63-72 [PMID: 27418370]
  34. J Fluoresc. 2010 Nov;20(6):1211-23 [PMID: 20443050]
  35. Biosens Bioelectron. 1999 May 31;14(5):457-64 [PMID: 10451913]
  36. Nucleic Acid Ther. 2013 Dec;23(6):443-9 [PMID: 24256293]
  37. Biomicrofluidics. 2015 Jun 15;9(3):034111 [PMID: 26180568]
  38. J Biotechnol. 2003 Apr 10;102(1):15-22 [PMID: 12668310]
  39. Nat Rev Drug Discov. 2010 Jul;9(7):537-50 [PMID: 20592747]
  40. Methods Enzymol. 1996;267:336-67 [PMID: 8743326]
  41. Nature. 1990 Aug 30;346(6287):818-22 [PMID: 1697402]
  42. Biochemistry. 1983 May 24;22(11):2601-10 [PMID: 6347247]
  43. Anal Chem. 2005 Oct 1;77(19):6107-12 [PMID: 16194066]
  44. Anal Chem. 2009 Jul 1;81(13):5490-5 [PMID: 19480397]
  45. J Am Chem Soc. 2004 Jan 14;126(1):20-1 [PMID: 14709039]
  46. Biochemistry. 1996 Nov 12;35(45):14413-24 [PMID: 8916928]
  47. Oligonucleotides. 2011 Mar-Apr;21(2):93-100 [PMID: 21413890]
  48. Nucleic Acids Res. 2007;35(15):5262-73 [PMID: 17686787]
  49. Biosens Bioelectron. 2015 Feb 15;64:345-51 [PMID: 25259877]
  50. RSC Adv. 2019 Mar 27;9(17):9762-9768 [PMID: 35520705]
  51. Biosens Bioelectron. 2012 May 15;35(1):50-55 [PMID: 22410487]
  52. Biosens Bioelectron. 2015 Nov 15;73:1-6 [PMID: 26042871]
  53. Lab Chip. 2016 Dec 20;17(1):178-185 [PMID: 27924973]
  54. Sci Rep. 2016 Jun 08;6:27121 [PMID: 27272884]
  55. Ann N Y Acad Sci. 2006 Oct;1082:151-71 [PMID: 17145936]
  56. J Biol Chem. 2001 May 11;276(19):16464-8 [PMID: 11279054]
  57. Anal Chem. 2007 Apr 1;79(7):2984-91 [PMID: 17313183]
  58. J Am Chem Soc. 2006 Jan 25;128(3):780-90 [PMID: 16417367]
  59. Nucleic Acids Res. 1999 May 1;27(9):2006-14 [PMID: 10198434]
  60. Sensors (Basel). 2015 Jun 11;15(6):13839-50 [PMID: 26110408]
  61. Adv Biosyst. 2019 May;3(5):e1900012 [PMID: 32627415]
  62. Anal Bioanal Chem. 2006 Jan;384(1):191-8 [PMID: 16315013]

Word Cloud

Created with Highcharts 10.0.0aptamerselectionSELEXmethodshighlowAptamersadvantagesmicrofluidicsequencessingle-strandoligonucleotidesDNARNApotentialbindingcapabilityspecifictargetmoleculesincreasinglyusedagentsanalysisdiagnosismedicaltreatmentgeneratedmethodnamedsystematicevolutionligandsexponentialenrichmentNumerousdevelopedselectionsHoweverconventionalstillsufferlaborintensityoperationefficiencysuccessrateThusapplicationsdesiredpropertieslimitedcostspeedupgradedextentautomationtechnologiesbecomepromisingtoolsrapidthroughputpaperreviewscurrentprogressessystemsComparisonsperformancesdiscussionsprinciplesstructureoperationswelllimitationsvariousmicrofluidic-basedprovidedApplicationMicrofluidicTechnologiesAptamerSelectionmicroarraymicrofluidicsoligonucleotide

Similar Articles

Cited By