COVID-19: Estimation of the transmission dynamics in Spain using a stochastic simulator and black-box optimization techniques.

Marcos Matabuena, Pablo Rodríguez-Mier, Carlos García-Meixide, Victor Leborán
Author Information
  1. Marcos Matabuena: CiTIUS (Centro Singular de Investigación en Tecnoloxías Intelixentes), Universidade de Santiago of Compostela, Santiago de Compostela, Spain. Electronic address: marcos.matabuena@usc.es.
  2. Pablo Rodríguez-Mier: Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse 31300, France.
  3. Carlos García-Meixide: Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
  4. Victor Leborán: CiTIUS (Centro Singular de Investigación en Tecnoloxías Intelixentes), Universidade de Santiago of Compostela, Santiago de Compostela, Spain.

Abstract

BACKGROUND AND OBJECTIVES: Epidemiological models of epidemic spread are an essential tool for optimizing decision-making. The current literature is very extensive and covers a wide variety of deterministic and stochastic models. However, with the increase in computing resources, new, more general, and flexible procedures based on simulation models can assess the effectiveness of measures and quantify the current state of the epidemic. This paper illustrates the potential of this approach to build a new dynamic probabilistic model to estimate the prevalence of SARS-CoV-2 infections in different compartments.
METHODS: We propose a new probabilistic model in which, for the first time in the epidemic literature, parameter learning is carried out using gradient-free stochastic black-box optimization techniques simulating multiple trajectories of the infection dynamics in a general way, solving an inverse problem that is defined employing the daily information from mortality records.
RESULTS: After the application of the new proposal in Spain in the first and successive waves, the result of the model confirms the accuracy to estimate the seroprevalence and allows us to know the real dynamics of the pandemic a posteriori to assess the impact of epidemiological measures by the Spanish government and to plan more efficiently the subsequent decisions with the prior knowledge obtained.
CONCLUSIONS: The model results allow us to estimate the daily patterns of COVID-19 infections in Spain retrospectively and examine the population's exposure to the virus dynamically in contrast to seroprevalence surveys. Furthermore, given the flexibility of our simulation framework, we can model situations -even using non-parametric distributions between the different compartments in the model- that other models in the existing literature cannot. Our general optimization strategy remains valid in these cases, and we can easily create other non-standard simulation epidemic models that incorporate more complex and dynamic structures.

Keywords

References

  1. Int J Infect Dis. 2020 May;94:154-155 [PMID: 32179137]
  2. Lancet Infect Dis. 2020 Jul;20(7):776-777 [PMID: 32224313]
  3. Proc Natl Acad Sci U S A. 2021 Aug 3;118(31): [PMID: 34312227]
  4. Nature. 2021 Feb;590(7844):140-145 [PMID: 33137809]
  5. Nat Med. 2020 May;26(5):640-642 [PMID: 32273610]
  6. Malar J. 2011 Jul 21;10:202 [PMID: 21777413]
  7. Sci Transl Med. 2020 Mar 11;12(534): [PMID: 32161107]
  8. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  9. BMJ. 2020 Apr 1;369:m1327 [PMID: 32238354]
  10. J R Soc Interface. 2005 Sep 22;2(4):295-307 [PMID: 16849187]
  11. Am J Public Health. 1999 Aug;89(8):1170-4 [PMID: 10432901]
  12. PLoS Comput Biol. 2018 Jun 15;14(6):e1006134 [PMID: 29906286]
  13. Proc Natl Acad Sci U S A. 2021 Mar 2;118(9): [PMID: 33627409]
  14. BMC Public Health. 2021 Jun 5;21(1):1073 [PMID: 34090392]
  15. PLoS One. 2020 Oct 1;15(10):e0239569 [PMID: 33002036]
  16. J Comput Graph Stat. 2017;26(4):918-929 [PMID: 30515026]
  17. Proc Natl Acad Sci U S A. 2021 Jun 29;118(26): [PMID: 34162708]
  18. Math Biosci. 1994 Nov;124(1):83-105 [PMID: 7827425]
  19. Epidemics. 2018 Mar;22:43-49 [PMID: 28256420]
  20. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2802-2804 [PMID: 30737293]
  21. Biostatistics. 2012 Jan;13(1):153-65 [PMID: 21835814]
  22. Lancet Infect Dis. 2020 Aug;20(8):911-919 [PMID: 32353347]
  23. Ann Appl Stat. 2017 Mar;11(1):202-224 [PMID: 28979611]
  24. Science. 2021 Feb 12;371(6530):680-681 [PMID: 33574202]
  25. Nature. 2021 Jan;589(7841):276-280 [PMID: 33086375]
  26. Sci Rep. 2016 Jan 28;6:19767 [PMID: 26819191]
  27. Nat Med. 2020 Sep;26(9):1417-1421 [PMID: 32665655]
  28. Am J Epidemiol. 2005 Sep 1;162(5):479-86 [PMID: 16076827]
  29. Lancet Infect Dis. 2020 Jun;20(6):669-677 [PMID: 32240634]
  30. J Urban Health. 2021 Apr;98(2):197-204 [PMID: 33649905]
  31. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22597-22602 [PMID: 32826332]
  32. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33441450]
  33. Science. 2020 Jul 10;369(6500):208-211 [PMID: 32404476]
  34. Clin Microbiol Infect. 2013 Nov;19(11):999-1005 [PMID: 24266045]
  35. N Engl J Med. 2020 Mar 26;382(13):1268-1269 [PMID: 32109011]
  36. Science. 2020 May 22;368(6493):860-868 [PMID: 32291278]
  37. Biometrics. 2013 Mar;69(1):41-51 [PMID: 23003003]
  38. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30055-30062 [PMID: 32471948]
  39. BMJ. 2020 Apr 2;369:m1375 [PMID: 32241884]
  40. Nature. 2020 Jun;582(7813):482-484 [PMID: 32581374]
  41. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 10;41(2):145-151 [PMID: 32064853]
  42. Am J Epidemiol. 2021 Jul 1;190(7):1377-1385 [PMID: 33475686]
  43. BMJ. 2020 Jan 31;368:m406 [PMID: 32005675]
  44. Arch Bronconeumol (Engl Ed). 2020 Sep;56(9):601-602 [PMID: 32410768]
  45. BMJ. 2020 Nov 27;371:m4509 [PMID: 33246972]
  46. Nat Med. 2020 Apr;26(4):506-510 [PMID: 32284616]
  47. Lancet. 2020 Aug 22;396(10250):535-544 [PMID: 32645347]
  48. PLoS One. 2020 Sep 10;15(9):e0238904 [PMID: 32913365]
  49. Euro Surveill. 2020 Mar;25(10): [PMID: 32183930]

MeSH Term

COVID-19
Humans
Pandemics
Retrospective Studies
SARS-CoV-2
Seroepidemiologic Studies
Spain

Word Cloud

Created with Highcharts 10.0.0modelsmodelepidemicnewliteraturestochasticgeneralsimulationcanestimateusingoptimizationdynamicsSpaincurrentassessmeasuresdynamicprobabilisticinfectionsdifferentcompartmentsfirstblack-boxtechniquesdailyseroprevalenceusCOVID-19BACKGROUNDANDOBJECTIVES:Epidemiologicalspreadessentialtooloptimizingdecision-makingextensivecoverswidevarietydeterministicHoweverincreasecomputingresourcesflexibleproceduresbasedeffectivenessquantifystatepaperillustratespotentialapproachbuildprevalenceSARS-CoV-2METHODS:proposetimeparameterlearningcarriedgradient-freesimulatingmultipletrajectoriesinfectionwaysolvinginverseproblemdefinedemployinginformationmortalityrecordsRESULTS:applicationproposalsuccessivewavesresultconfirmsaccuracyallowsknowrealpandemicposterioriimpactepidemiologicalSpanishgovernmentplanefficientlysubsequentdecisionspriorknowledgeobtainedCONCLUSIONS:resultsallowpatternsretrospectivelyexaminepopulation'sexposurevirusdynamicallycontrastsurveysFurthermoregivenflexibilityframeworksituations-evennon-parametricdistributionsmodel-existingstrategyremainsvalidcaseseasilycreatenon-standardincorporatecomplexstructuresCOVID-19:EstimationtransmissionsimulatorComputingscienceEpidemicEvolutionarycomputationsStochasticprocesses

Similar Articles

Cited By