Loading Single-Ni Atoms on Assembled Hollow N-Rich Carbon Plates for Efficient CO Electroreduction.

Yunxiang Li, Song Lin Zhang, Weiren Cheng, Ye Chen, Deyan Luan, Shuyan Gao, Xiong Wen David Lou
Author Information
  1. Yunxiang Li: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  2. Song Lin Zhang: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  3. Weiren Cheng: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  4. Ye Chen: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  5. Deyan Luan: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  6. Shuyan Gao: School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.
  7. Xiong Wen David Lou: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID

Abstract

The rational design of catalysts' spatial structure is vitally important to boost catalytic performance through exposing the active sites, enhancing the mass transfer, and confining the reactants. Herein, a dual-linker zeolitic tetrazolate framework-engaged strategy is developed to construct assembled hollow plates (AHP) of N-rich carbon (NC), which is loaded with single-Ni atoms to form a highly efficient electrocatalyst (designated as Ni-NC(AHP)). In the carbonization process, the thermally unstable linker (5-aminotetrazole) serves as the self-sacrificial template and the other linker (2-methylimidazole) mainly serves as the carbon and nitrogen source to form hollow NC matrix. The formed Ni-NC(AHP) catalyst possesses enhanced mesoporosity and more available surface area, thus promoting mass transport and affording abundant accessible single-Ni sites. These features contribute to remarkable performance for electrochemical CO reduction with exceptionally high selectivity of nearly 100% towards CO in a wide potential range and dramatically enhanced CO partial current density.

Keywords

References

  1. C. Costentin, M. Robert, J. M. Saveant, Chem. Soc. Rev. 2013, 42, 2423.
  2. J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631.
  3. C. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504.
  4. C. Graves, S. D. Ebbesen, M. Mogensen, K. S. Lackner, Renewable Sustainable Energy Rev. 2011, 15, 1.
  5. S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W. Lou, Angew. Chem., Int. Ed. 2019, 58, 8499.
  6. S. Liu, X. F. Lu, J. Xiao, X. Wang, X. W. Lou, Angew. Chem., Int. Ed. 2019, 58, 13828.
  7. P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, Angew. Chem., Int. Ed. 2020, 59, 10807.
  8. D. Yang, H. Yu, T. He, S. Zuo, X. Liu, H. Yang, B. Ni, H. Li, L. Gu, D. Wang, X. Wang, Nat. Commun. 2019, 10, 3844.
  9. S. Liu, H. Tao, L. Zeng, Q. Liu, Z. Xu, Q. Liu, J. L. Luo, J. Am. Chem. Soc. 2017, 139, 2160.
  10. Y. He, Y. Li, J. Zhang, S. Wang, D. Huang, G. Yang, X. Yi, H. Lin, X. Han, W. Hu, Y. Deng, J. Ye, Nano Energy 2020, 77, 105010.
  11. Y. Chen, R. Guo, X. Peng, X. Wang, X. Liu, J. Ren, J. He, L. Zhuo, J. Sun, Y. Liu, Y. Wu, J. Luo, ACS Nano 2020, 14, 6938.
  12. H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1904548.
  13. H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou, Y. Wang, H. Li, J. Dong, Z. Zhuang, W. Chen, D. Wang, J. Zhang, Y. Li, Angew. Chem., Int. Ed. 2020, 59, 22465.
  14. W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, Chem. Sci. 2016, 7, 5758.
  15. H. Zhang, P. An, W. Zhou, B. Y. Guan, P. Zhang, J. Dong, X. W. Lou, Sci. Adv. 2018, 4, eaao6657.
  16. C. C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu, Q. Xu, Angew. Chem., Int. Ed. 2020, 59, 7384.
  17. Q. Fan, P. Hou, C. Choi, T. S. Wu, S. Hong, F. Li, Y. L. Soo, P. Kang, Y. Jung, Z. Sun, Adv. Energy Mater. 2019, 10, 1903068.
  18. K. Jiang, S. Siahrostami, A. J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.-B. Cai, D. Bell, K. Chan, J. K. Nørskov, Y. Cui, H. Wang, Chem 2017, 3, 950.
  19. X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 14889.
  20. C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 8078.
  21. H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, T. Zhang, Nat. Commun. 2019, 10, 4585.
  22. Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W. C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 4218.
  23. H. Zhang, W. Cheng, D. Luan, X. W. Lou, Angew. Chem., Int. Ed. 2021, 60, 13177.
  24. Q. Qu, S. Ji, Y. Chen, D. Wang, Y. Li, Chem. Sci. 2021, 12, 4201.
  25. Y. Li, S. Wang, X. S. Wang, Y. He, Q. Wang, Y. Li, M. Li, G. Yang, J. Yi, H. Lin, D. Huang, L. Li, H. Chen, J. Ye, J. Am. Chem. Soc. 2020, 142, 19259.
  26. L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2016, 28, 1668.
  27. X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
  28. F. Jaouen, M. Lefevre, J. P. Dodelet, M. Cai, J. Phys. Chem. B 2006, 110, 5553.
  29. C. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu, J. Li, Y. Yamauchi, Chem 2020, 6, 19.
  30. H. Zhou, T. Yang, Z. Kou, L. Shen, Y. Zhao, Z. Wang, X. Wang, Z. Yang, J. Du, J. Xu, M. Chen, L. Tian, W. Guo, Q. Wang, H. Lv, W. Chen, X. Hong, J. Luo, D. He, Y. Wu, Angew. Chem., Int. Ed. 2020, 59, 20465.
  31. X. Xie, L. Peng, H. Yang, G. I. N. Waterhouse, L. Shang, T. Zhang, Adv. Mater. 2021, 33, 2101038.
  32. R. Zhao, Z. Liang, S. Gao, C. Yang, B. Zhu, J. Zhao, C. Qu, R. Zou, Q. Xu, Angew. Chem., Int. Ed. 2019, 58, 1975.
  33. H. Zhang, W. Zhou, T. Chen, B. Y. Guan, Z. Li, X. W. Lou, Energy Environ. Sci. 2018, 11, 1980.
  34. A. Zanon, S. Chaemchuen, B. Mousavi, F. Verpoort, J. CO2 Util. 2017, 20, 282.
  35. J. Liu, J. He, L. Wang, R. Li, P. Chen, X. Rao, L. Deng, L. Rong, J. Lei, Sci. Rep. 2016, 6, 23667.
  36. B. Ni, C. Ouyang, X. Xu, J. Zhuang, X. Wang, Adv. Mater. 2017, 29, 1701354.
  37. Y. Zhang, L. Jiao, W. Yang, C. Xie, H. L. Jiang, Angew. Chem., Int. Ed. 2021, 60, 7607.
  38. Z. Yang, B. Chen, W. Chen, Y. Qu, F. Zhou, C. Zhao, Q. Xu, Q. Zhang, X. Duan, Y. Wu, Nat. Commun. 2019, 10, 3734.
  39. H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, B. Liu, Nat. Energy 2018, 3, 140.
  40. J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen, Z. Li, Y. Qu, J. Dong, J. Luo, Z. Li, Y. Wu, Angew. Chem., Int. Ed. 2018, 57, 14095.
  41. J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma, Adv. Mater. 2020, 32, 2003134.
  42. M. Jiang, X. Cao, D. Zhu, Y. Duan, J. Zhang, Electrochim. Acta 2016, 196, 699.
  43. C. Yan, H. Zhao, J. Li, H. Jin, L. Liu, W. Wu, J. Wang, Y. Lei, S. Wang, Small 2020, 16, 1907141.
  44. L. Wang, D. C. Higgins, Y. Ji, C. G. Morales-Guio, K. Chan, C. Hahn, T. F. Jaramillo, Proc. Natl. Acad. Sci. USA 2020, 117, 12572.
  45. M. Ma, K. Djanashvili, W. A. Smith, Angew. Chem., Int. Ed. 2016, 55, 6680.
  46. D. Hursan, C. Janaky, ACS Energy Lett. 2018, 3, 722.
  47. S. Wang, X. Hai, X. Ding, S. Jin, Y. Xiang, P. Wang, B. Jiang, F. Ichihara, M. Oshikiri, X. Meng, Y. Li, W. Matsuda, J. Ma, S. Seki, X. Wang, H. Huang, Y. Wada, H. Chen, J. Ye, Nat. Commun. 2020, 11, 1149.
  48. B. Li, H. Nam, J. Zhao, J. Chang, N. Lingappan, F. Yao, T. H. Lee, Y. H. Lee, Adv. Mater. 2017, 29, 1605083.
  49. T.-T. Zhuang, Y. Pang, Z.-Q. Liang, Z. Wang, Y. Li, C.-S. Tan, J. Li, C. T. Dinh, P. De Luna, P.-L. Hsieh, T. Burdyny, H.-H. Li, M. Liu, Y. Wang, F. Li, A. Proppe, A. Johnston, D.-H. Nam, Z.-Y. Wu, Y.-R. Zheng, A. H. Ip, H. Tan, L.-J. Chen, S.-H. Yu, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Catal. 2018, 1, 946.

Grants

  1. MOE2017-T2-2-003/Ministry of Education of Singapore
  2. MOE2019-T2-2-049/Ministry of Education of Singapore

Word Cloud

Created with Highcharts 10.0.0COhollowAHPcarbonperformancesitesmassNCsingle-NiformNi-NClinkerservesenhancedreductionrationaldesigncatalysts'spatialstructurevitallyimportantboostcatalyticexposingactiveenhancingtransferconfiningreactantsHereindual-linkerzeolitictetrazolateframework-engagedstrategydevelopedconstructassembledplatesN-richloadedatomshighlyefficientelectrocatalystdesignatedcarbonizationprocessthermallyunstable5-aminotetrazoleself-sacrificialtemplate2-methylimidazolemainlynitrogensourcematrixformedcatalystpossessesmesoporosityavailablesurfaceareathuspromotingtransportaffordingabundantaccessiblefeaturescontributeremarkableelectrochemicalexceptionallyhighselectivitynearly100%towardswidepotentialrangedramaticallypartialcurrentdensityLoadingSingle-NiAtomsAssembledHollowN-RichCarbonPlatesEfficientElectroreductionCO2electrocatalysissingle-atomcatalysts

Similar Articles

Cited By