SARS-CoV-2 spike-specific memory B cells express markers of durable immunity after non-severe COVID-19 but not after severe disease.

Raphael A Reyes, Kathleen Clarke, S Jake Gonzales, Angelene M Cantwell, Rolando Garza, Gabriel Catano, Robin E Tragus, Thomas F Patterson, Sebastiaan Bol, Evelien M Bunnik
Author Information
  1. Raphael A Reyes: Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
  2. Kathleen Clarke: Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
  3. S Jake Gonzales: Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
  4. Angelene M Cantwell: Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
  5. Rolando Garza: Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
  6. Gabriel Catano: Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, University Health System, San Antonio, TX, USA.
  7. Robin E Tragus: Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, University Health System, San Antonio, TX, USA.
  8. Thomas F Patterson: Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, University Health System, San Antonio, TX, USA.
  9. Sebastiaan Bol: Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
  10. Evelien M Bunnik: Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Abstract

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n=8) or severe (n=5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG B cells showed increased expression of markers associated with durable B cell memory, including T-bet, FcRL5, and CD11c, which was not observed after severe disease. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet IgG memory B cells decreased to baseline levels. Collectively, our results suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.

References

  1. J Mol Biol. 2020 May 1;432(10):3309-3325 [PMID: 32320687]
  2. Nat Commun. 2021 Mar 17;12(1):1715 [PMID: 33731724]
  3. N Engl J Med. 2021 Mar 4;384(9):795-807 [PMID: 33306283]
  4. Nature. 2021 Jul;595(7867):426-431 [PMID: 34126625]
  5. Science. 2020 Dec 11;370(6522):1339-1343 [PMID: 33159009]
  6. Immunity. 2021 Aug 10;54(8):1853-1868.e7 [PMID: 34331873]
  7. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  8. Cell Mol Immunol. 2021 Feb;18(2):318-327 [PMID: 33408342]
  9. Sci Immunol. 2017 Jan 27;2(7): [PMID: 28783670]
  10. Nat Med. 2021 Jul;27(7):1178-1186 [PMID: 33953384]
  11. J Med Virol. 2021 Oct;93(10):5756-5767 [PMID: 34241899]
  12. Cell Rep Med. 2021 Jul 20;2(7):100354 [PMID: 34250512]
  13. J Immunol. 2021 Jun 15;206(12):2785-2790 [PMID: 34049971]
  14. Nat Microbiol. 2020 Dec;5(12):1598-1607 [PMID: 33106674]
  15. Sci Immunol. 2021 Feb 23;6(56): [PMID: 33622975]
  16. Cell. 2021 Jan 7;184(1):169-183.e17 [PMID: 33296701]
  17. Cell. 2020 Oct 1;183(1):143-157.e13 [PMID: 32877699]
  18. Science. 2020 Sep 18;369(6510):1501-1505 [PMID: 32703906]
  19. Immunity. 2019 Aug 20;51(2):398-410.e5 [PMID: 31350180]
  20. N Engl J Med. 2021 Feb 11;384(6):533-540 [PMID: 33369366]
  21. Nat Immunol. 2020 Dec;21(12):1506-1516 [PMID: 33028979]
  22. Front Immunol. 2019 Apr 24;10:852 [PMID: 31068937]
  23. Immunity. 2020 May 19;52(5):842-855.e6 [PMID: 32353250]
  24. Science. 2021 Jun 4;372(6546):1108-1112 [PMID: 33947773]
  25. Science. 2021 Feb 5;371(6529): [PMID: 33408181]
  26. EClinicalMedicine. 2021 May;35:100861 [PMID: 33937733]
  27. Cell Rep. 2019 Apr 30;27(5):1446-1460.e4 [PMID: 31042472]
  28. Elife. 2019 May 15;8: [PMID: 31090539]
  29. Sci Transl Med. 2021 Jun 30;13(600): [PMID: 34103407]
  30. Immunity. 2018 Oct 16;49(4):725-739.e6 [PMID: 30314758]
  31. Cell. 2021 Mar 4;184(5):1201-1213.e14 [PMID: 33571429]
  32. Lancet. 2021 Mar 27;397(10280):1204-1212 [PMID: 33743221]
  33. Sci Immunol. 2020 Dec 22;5(54): [PMID: 33443036]
  34. Immunity. 2023 Apr 11;56(4):847-863.e8 [PMID: 36958335]
  35. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  36. Nature. 2020 Dec;588(7839):682-687 [PMID: 33045718]
  37. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  38. PLoS One. 2021 Jan 28;16(1):e0244855 [PMID: 33507994]
  39. Cell Mol Immunol. 2020 Oct;17(10):1101-1103 [PMID: 32879471]
  40. JCI Insight. 2017 Apr 20;2(8): [PMID: 28422752]
  41. N Engl J Med. 2020 Nov 5;383(19):1813-1826 [PMID: 32445440]
  42. Sci Immunol. 2021 Apr 15;6(58): [PMID: 33858945]
  43. mBio. 2020 Sep 25;11(5): [PMID: 32978311]
  44. J Clin Invest. 2021 Apr 1;131(7): [PMID: 33571162]
  45. Cell Host Microbe. 2021 Jul 14;29(7):1063-1075 [PMID: 34174992]
  46. Clin Transl Immunology. 2021 Jul 05;10(7):e1306 [PMID: 34257967]
  47. Nature. 2021 Jul;595(7867):421-425 [PMID: 34030176]
  48. Front Immunol. 2021 Mar 18;12:602539 [PMID: 33815362]
  49. Nat Commun. 2021 May 19;12(1):2938 [PMID: 34011939]

Grants

  1. HHSN272201400008C/NIAID NIH HHS
  2. TL1 TR002647/NCATS NIH HHS
  3. UL1 TR002645/NCATS NIH HHS
  4. P30 CA054174/NCI NIH HHS
  5. UL1 TR001120/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0Bmemorycellscellspike-specificresponseCOVID-19non-severeseverediseaseSARS-CoV-2onsetphenotypeIgGmonthspost-symptomspikeindividualsshowedmarkersdurableT-betinfectionelicitsrobustresultinggenerationlong-livedplasmaaimeddetermineeffectseveritycharacterizechangescompartmentrecoveryfiveUsinghigh-parameterspectralflowcytometryanalyzedreactivityproteinreceptorbindingdomainRBDrecoveredhospitalizedn=8n=5OnemonthsymptomsubstantialproportionactivatedexperiencedincreasedexpressionassociatedincludingFcRL5CD11cobservedFivemajorityrestingpercentagedecreasedbaselinelevelsCollectivelyresultssuggestelicitedmayhigherqualityexpressimmunity

Similar Articles

Cited By