N-Methyladenosine RNA Modification: An Emerging Immunotherapeutic Approach to Turning Up Cold Tumors.

Lei Zhan, Junhui Zhang, Suding Zhu, Xiaojing Liu, Jing Zhang, Wenyan Wang, Yijun Fan, Shiying Sun, Bing Wei, Yunxia Cao
Author Information
  1. Lei Zhan: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
  2. Junhui Zhang: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
  3. Suding Zhu: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
  4. Xiaojing Liu: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
  5. Jing Zhang: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
  6. Wenyan Wang: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
  7. Yijun Fan: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
  8. Shiying Sun: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
  9. Bing Wei: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
  10. Yunxia Cao: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.

Abstract

Immunotherapy is a novel clinical approach that has shown clinical efficacy in multiple cancers. However, only a fraction of patients respond well to immunotherapy. Immuno-oncological studies have identified the type of tumors that are sensitive to immunotherapy, the so-called hot tumors, while unresponsive tumors, known as "cold tumors," have the potential to turn into hot ones. Therefore, the mechanisms underlying cold tumor formation must be elucidated, and efforts should be made to turn cold tumors into hot tumors. N-methyladenosine (mA) RNA modification affects the maturation and function of immune cells by controlling mRNA immunogenicity and innate immune components in the tumor microenvironment (TME), suggesting its predominant role in the development of tumors and its potential use as a target to improve cancer immunotherapy. In this review, we first describe the TME, cold and hot tumors, and mA RNA modification. Then, we focus on the role of mA RNA modification in cold tumor formation and regulation. Finally, we discuss the potential clinical implications and immunotherapeutic approaches of mA RNA modification in cancer patients. In conclusion, mA RNA modification is involved in cold tumor formation by regulating immunity, tumor-cell-intrinsic pathways, soluble inhibitory mediators in the TME, increasing metabolic competition, and affecting the tumor mutational burden. Furthermore, mA RNA modification regulators may potentially be used as diagnostic and prognostic biomarkers for different types of cancer. In addition, targeting mA RNA modification may sensitize cancers to immunotherapy, making it a promising immunotherapeutic approach for turning cold tumors into hot ones.

Keywords

References

  1. PeerJ. 2020 Nov 26;8:e10385 [PMID: 33304653]
  2. Genes Dev. 2018 Mar 1;32(5-6):415-429 [PMID: 29535189]
  3. Sci Rep. 2017 Feb 13;7:42271 [PMID: 28205560]
  4. Cancer Invest. 2021 Jan;39(1):39-54 [PMID: 33176521]
  5. Cell Res. 2017 Sep;27(9):1115-1127 [PMID: 28809393]
  6. J Hematol Oncol. 2020 Aug 27;13(1):117 [PMID: 32854717]
  7. Oncogene. 2020 Jun;39(23):4507-4518 [PMID: 32366907]
  8. Nat Rev Immunol. 2016 Nov 25;16(12):723-740 [PMID: 27885276]
  9. Cell Res. 2017 Mar;27(3):444-447 [PMID: 28106076]
  10. Pharmacol Ther. 2017 Oct;178:31-47 [PMID: 28322974]
  11. Cell Metab. 2021 Jun 1;33(6):1221-1233.e11 [PMID: 33910046]
  12. Int Immunopharmacol. 2020 Apr;81:105932 [PMID: 31836430]
  13. Clin Cancer Res. 2016 Apr 15;22(8):1865-74 [PMID: 27084740]
  14. Cancer Cell. 2020 Mar 16;37(3):270-288 [PMID: 32183948]
  15. Mol Cell. 2016 Jul 21;63(2):306-317 [PMID: 27373337]
  16. Science. 2015 Oct 9;350(6257):207-211 [PMID: 26359337]
  17. Biochem Biophys Res Commun. 2020 Mar 26;524(1):150-155 [PMID: 31982139]
  18. Front Cell Dev Biol. 2021 Mar 04;9:650023 [PMID: 33748145]
  19. Cancer Med. 2019 Aug;8(10):4766-4781 [PMID: 31243897]
  20. J Control Release. 2021 Jun 10;334:413-426 [PMID: 33964366]
  21. EBioMedicine. 2021 Mar;65:103271 [PMID: 33714027]
  22. J Clin Oncol. 2020 Sep 10;38(26):2952-2955 [PMID: 32706638]
  23. Cell. 2011 Dec 9;147(6):1355-68 [PMID: 22153078]
  24. Cell. 2019 Jul 25;178(3):731-747.e16 [PMID: 31257032]
  25. Nat Commun. 2019 Jun 25;10(1):2782 [PMID: 31239444]
  26. Nat Cell Biol. 2018 Sep;20(9):1074-1083 [PMID: 30154548]
  27. Front Mol Biosci. 2020 Dec 02;7:577460 [PMID: 33344502]
  28. Annu Rev Immunol. 2017 Apr 26;35:177-198 [PMID: 28125358]
  29. Nat Commun. 2021 Feb 26;12(1):1333 [PMID: 33637761]
  30. Cell. 2015 Jun 4;161(6):1388-99 [PMID: 26046440]
  31. Mol Cancer. 2020 Mar 12;19(1):53 [PMID: 32164750]
  32. Adv Exp Med Biol. 2017;1036:19-31 [PMID: 29275462]
  33. J Immunother Cancer. 2021 Feb;9(2): [PMID: 33574053]
  34. Hepatology. 2021 Sep;74(3):1461-1479 [PMID: 33813748]
  35. Clin Cancer Res. 2020 May 1;26(9):2087-2095 [PMID: 31948999]
  36. Elife. 2017 Oct 06;6: [PMID: 28984244]
  37. J Exp Med. 2013 Dec 16;210(13):2803-11 [PMID: 24277150]
  38. Nat Commun. 2019 May 9;10(1):2123 [PMID: 31073180]
  39. Mol Ther Nucleic Acids. 2021 Apr 09;24:780-791 [PMID: 33996259]
  40. J Immunother Cancer. 2017 Jul 18;5(1):53 [PMID: 28716061]
  41. Front Cell Dev Biol. 2021 Feb 18;9:627706 [PMID: 33681207]
  42. J Cell Mol Med. 2019 Mar;23(3):2163-2173 [PMID: 30648791]
  43. Front Oncol. 2020 Jun 02;10:769 [PMID: 32582536]
  44. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21441-21449 [PMID: 32817424]
  45. Nat Commun. 2016 Aug 25;7:12626 [PMID: 27558897]
  46. Cell Res. 2018 May;28(5):507-517 [PMID: 29686311]
  47. Front Oncol. 2021 Feb 23;11:624395 [PMID: 33718187]
  48. Gut. 2020 Jul;69(7):1193-1205 [PMID: 31582403]
  49. Mol Cancer. 2021 Feb 8;20(1):29 [PMID: 33557837]
  50. Mol Cancer. 2020 May 12;19(1):88 [PMID: 32398132]
  51. Cancer Res. 2021 May 15;81(10):2651-2665 [PMID: 32788173]
  52. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6640-6650 [PMID: 32161124]
  53. Gan To Kagaku Ryoho. 2019 May;46(5):841-844 [PMID: 31189800]
  54. Int Immunopharmacol. 2020 Jun;83:106432 [PMID: 32248017]
  55. Cancer Res. 2009 Mar 15;69(6):2685-93 [PMID: 19258510]
  56. EMBO Rep. 2020 Jul 3;21(7):e49443 [PMID: 32350990]
  57. Mol Cell. 2016 Feb 18;61(4):507-519 [PMID: 26876937]
  58. Pathol Res Pract. 2020 Sep;216(9):153087 [PMID: 32825955]
  59. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3971-5 [PMID: 4372599]
  60. Oncol Lett. 2017 Jun;13(6):4685-4690 [PMID: 28599470]
  61. EMBO J. 2020 Oct 15;39(20):e104514 [PMID: 32964498]
  62. Nat Chem Biol. 2019 Jan;15(1):88-94 [PMID: 30531910]
  63. Front Oncol. 2021 Mar 18;11:642159 [PMID: 33816290]
  64. Aging (Albany NY). 2021 Mar 26;13(7):10034-10057 [PMID: 33795529]
  65. Cancer Res. 2007 Mar 1;67(5):1883-6 [PMID: 17332313]
  66. Hepatology. 2021 Feb;73(2):533-547 [PMID: 32394474]
  67. Cell Res. 2014 Feb;24(2):177-89 [PMID: 24407421]
  68. Nat Med. 2018 May;24(5):541-550 [PMID: 29686425]
  69. Science. 2017 Mar 17;355(6330):1147-1152 [PMID: 28302822]
  70. Nature. 2019 Feb;566(7743):270-274 [PMID: 30728504]
  71. Theranostics. 2021 Jan 1;11(5):2201-2217 [PMID: 33500720]
  72. Nat Commun. 2021 Mar 2;12(1):1394 [PMID: 33654093]
  73. Mol Cancer. 2019 Dec 10;18(1):181 [PMID: 31823788]
  74. Mol Cancer. 2021 Apr 13;20(1):67 [PMID: 33849552]
  75. Sci Adv. 2021 Apr 28;7(18): [PMID: 33910903]
  76. Mol Ther Oncolytics. 2020 Apr 07;17:241-249 [PMID: 32346613]
  77. Ann Transl Med. 2021 Jan;9(1):59 [PMID: 33553352]
  78. Cell. 2015 Sep 10;162(6):1299-308 [PMID: 26321680]
  79. EMBO Rep. 2017 Nov;18(11):2004-2014 [PMID: 29051200]
  80. RNA. 1997 Nov;3(11):1233-47 [PMID: 9409616]
  81. Front Oncol. 2019 Dec 12;9:1403 [PMID: 31921660]
  82. Cell Metab. 2019 May 7;29(5):1028-1044 [PMID: 30982733]
  83. Cell Stem Cell. 2020 Jul 2;27(1):64-80.e9 [PMID: 32402250]
  84. Bioact Mater. 2021 Mar 18;6(10):3358-3382 [PMID: 33817416]
  85. Front Oncol. 2020 Dec 09;10:578963 [PMID: 33363011]
  86. Cells. 2020 Jan 25;9(2): [PMID: 31991845]
  87. Genome Biol. 2012 Oct 31;13(10):175 [PMID: 23113984]
  88. Cell Discov. 2018 Feb 27;4:10 [PMID: 29507755]
  89. Lancet. 2001 Feb 17;357(9255):539-45 [PMID: 11229684]
  90. J Exp Clin Cancer Res. 2021 Apr 15;40(1):132 [PMID: 33858476]
  91. Biosci Rep. 2014 Oct 22;34(5): [PMID: 25242086]
  92. Cancer Immunol Res. 2019 May;7(5):737-750 [PMID: 30842092]
  93. Int J Mol Sci. 2021 Feb 21;22(4): [PMID: 33670062]
  94. Cell Prolif. 2020 Mar;53(3):e12768 [PMID: 31967701]
  95. Mol Cancer. 2019 Nov 6;18(1):155 [PMID: 31690319]
  96. Nat Chem Biol. 2011 Oct 16;7(12):885-7 [PMID: 22002720]
  97. Methods Mol Biol. 2017;1562:79-87 [PMID: 28349455]
  98. J Exp Clin Cancer Res. 2020 Sep 29;39(1):203 [PMID: 32993738]
  99. Nat Rev Drug Discov. 2019 Mar;18(3):197-218 [PMID: 30610226]
  100. Lancet Oncol. 2020 Sep;21(9):e419-e430 [PMID: 32888471]
  101. Cell Res. 2017 Mar;27(3):315-328 [PMID: 28106072]
  102. Nature. 2012 Apr 29;485(7397):201-6 [PMID: 22575960]
  103. Nat Rev Cancer. 2012 Mar 15;12(4):298-306 [PMID: 22419253]
  104. Semin Oncol. 2014 Apr;41(2):156-73 [PMID: 24787290]
  105. Nat Cell Biol. 2021 Apr;23(4):355-365 [PMID: 33795874]
  106. Cancer Gene Ther. 2021 Apr;28(3-4):188-196 [PMID: 32759989]
  107. Mol Cell. 2013 Jan 10;49(1):18-29 [PMID: 23177736]
  108. Nature. 2017 May 4;545(7652):60-65 [PMID: 28397821]
  109. Mol Cancer. 2019 Jun 22;18(1):110 [PMID: 31228940]
  110. Cell. 2012 Jun 22;149(7):1635-46 [PMID: 22608085]
  111. Cancers (Basel). 2020 Mar 20;12(3): [PMID: 32245016]
  112. Semin Oncol. 2015 Aug;42(4):663-71 [PMID: 26320069]
  113. Nature. 2016 May 25;534(7608):575-8 [PMID: 27281194]
  114. Nat Rev Gastroenterol Hepatol. 2020 Feb;17(2):111-130 [PMID: 31900466]
  115. J Immunother Cancer. 2020 Oct;8(2): [PMID: 33046621]
  116. Cancer Res. 2014 Jan 1;74(1):153-161 [PMID: 24247719]
  117. Onco Targets Ther. 2020 Dec 15;13:12845-12856 [PMID: 33364780]
  118. Cell. 2018 Jan 11;172(1-2):90-105.e23 [PMID: 29249359]
  119. EMBO Rep. 2020 Apr 3;21(4):e49229 [PMID: 32064749]
  120. Onco Targets Ther. 2019 Jun 04;12:4391-4402 [PMID: 31239708]
  121. Cancer Res. 2019 Jun 1;79(11):2812-2820 [PMID: 30967398]
  122. Mol Cancer. 2020 May 22;19(1):94 [PMID: 32443966]
  123. Mol Cell. 2019 Oct 3;76(1):70-81.e9 [PMID: 31445886]
  124. Front Oncol. 2019 May 03;9:332 [PMID: 31131257]
  125. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2047-56 [PMID: 27001847]
  126. Cancer Cell. 2020 Jul 13;38(1):79-96.e11 [PMID: 32531268]
  127. Mol Cell. 2018 Mar 15;69(6):1028-1038.e6 [PMID: 29547716]
  128. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33594424]
  129. J Exp Clin Cancer Res. 2019 Sep 6;38(1):393 [PMID: 31492150]
  130. Theranostics. 2020 Jul 25;10(21):9528-9543 [PMID: 32863943]
  131. Mol Cell. 2018 Sep 20;71(6):973-985.e5 [PMID: 30197295]
  132. Cancer Cell Int. 2021 Jan 11;21(1):46 [PMID: 33430867]
  133. Nucleic Acids Res. 2019 Apr 23;47(7):e41 [PMID: 30993345]
  134. Mol Cancer. 2019 Dec 23;18(1):188 [PMID: 31870368]
  135. Nature. 2019 Mar;567(7748):414-419 [PMID: 30867593]
  136. Trends Genet. 2017 Jun;33(6):380-390 [PMID: 28499622]
  137. Trends Cancer. 2020 Jul;6(7):605-618 [PMID: 32610070]
  138. Trends Genet. 2020 Jan;36(1):44-52 [PMID: 31810533]
  139. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20159-20170 [PMID: 32747553]
  140. J Int Med Res. 2020 Sep;48(9):300060520951405 [PMID: 32972288]
  141. J Exp Clin Cancer Res. 2019 Jun 13;38(1):255 [PMID: 31196207]
  142. PeerJ. 2020 Sep 28;8:e9602 [PMID: 33062408]
  143. Science. 2015 Apr 3;348(6230):62-8 [PMID: 25838374]
  144. Nat Genet. 2019 Feb;51(2):202-206 [PMID: 30643254]
  145. Nature. 2015 Feb 26;518(7540):560-4 [PMID: 25719671]
  146. Nature. 2017 Aug 17;548(7667):338-342 [PMID: 28792938]
  147. Cold Spring Harb Perspect Biol. 2012 Dec 01;4(12): [PMID: 23209147]
  148. Science. 2015 Apr 3;348(6230):56-61 [PMID: 25838373]
  149. Mol Ther Nucleic Acids. 2020 Oct 04;22:750-765 [PMID: 33230473]

Word Cloud

Created with Highcharts 10.0.0tumorsRNAmodificationcoldmAhottumorimmunotherapyclinicalpotentialformationTMEcancerapproachcancerspatientsturnonesimmunemicroenvironmentroleimmunotherapeuticmayImmunotherapynovelshownefficacymultipleHoweverfractionrespondwellImmuno-oncologicalstudiesidentifiedtypesensitiveso-calledunresponsiveknown"cold"ThereforemechanismsunderlyingmustelucidatedeffortsmadeN-methyladenosineaffectsmaturationfunctioncellscontrollingmRNAimmunogenicityinnatecomponentssuggestingpredominantdevelopmentusetargetimprovereviewfirstdescribefocusregulationFinallydiscussimplicationsapproachesconclusioninvolvedregulatingimmunitytumor-cell-intrinsicpathwayssolubleinhibitorymediatorsincreasingmetaboliccompetitionaffectingmutationalburdenFurthermoreregulatorspotentiallyuseddiagnosticprognosticbiomarkersdifferenttypesadditiontargetingsensitizemakingpromisingturningN-MethyladenosineModification:EmergingImmunotherapeuticApproachTurningColdTumorsN6-methyladenosinebiomarkerprognosis

Similar Articles

Cited By