Genotype data not consistent with clonal transmission of sea turtle fibropapillomatosis or goldfish schwannoma.
Máire Ní Leathlobhair, Kelsey Yetsko, Jessica A Farrell, Carmelo Iaria, Gabriele Marino, David J Duffy, Elizabeth P Murchison
Author Information
Máire Ní Leathlobhair: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK. ORCID
Kelsey Yetsko: The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA.
Jessica A Farrell: The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA.
Carmelo Iaria: Centre of Experimental Fish Pathology of Sicily (CISS), Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy. ORCID
Gabriele Marino: Department of Veterinary Sciences, Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy.
David J Duffy: The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA. ORCID
Elizabeth P Murchison: Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. ORCID
中文译文
English
Recent discoveries of transmissible cancers in multiple bivalve species suggest that direct transmission of cancer cells within species may be more common than previously thought, particularly in aquatic environments. Fibropapillomatosis occurs with high prevalence in green sea turtles ( ) and the geographic range of disease has increased since fibropapillomatosis was first reported in this species. Widespread incidence of schwannomas, benign tumours of Schwann cell origin, reported in aquarium-bred goldfish suggest an infectious aetiology. We investigated the hypothesis that cancers in these species arise by clonal transmission of cancer cells. Through analysis of polymorphic microsatellite alleles, we demonstrate concordance of host and tumour genotypes in diseased animals. These results imply that the tumours examined arose from independent oncogenic transformation of host tissue and were not clonally transmitted. Further, failure to experimentally transmit goldfish schwannoma via water exposure or inoculation suggest that this disease is unlikely to have an infectious aetiology.
Dryad | 10.5061/dryad.1zcrjdfsg
Trends Ecol Evol. 2013 Nov;28(11):628-35
[PMID: 23972467 ]
Evol Appl. 2016 May 17;9(5):633-4
[PMID: 27398093 ]
PLoS One. 2013;8(3):e59571
[PMID: 23527220 ]
Nat Rev Cancer. 2018 Oct;18(10):646-661
[PMID: 30116020 ]
Evol Appl. 2020 Mar 23;13(7):1719-1732
[PMID: 32821279 ]
Adv Cancer Res. 1985;43:75-112
[PMID: 3887857 ]
Elife. 2019 Nov 05;8:
[PMID: 31686650 ]
J Wildl Dis. 2009 Oct;45(4):1138-42
[PMID: 19901386 ]
Cell. 2015 Apr 9;161(2):255-63
[PMID: 25860608 ]
Philos Trans R Soc Lond B Biol Sci. 2015 Jul 19;370(1673):
[PMID: 26056368 ]
Mol Ecol Resour. 2009 Jan;9(1):354-6
[PMID: 21564648 ]
Environ Health Perspect. 1995 May;103 Suppl 4:27-30
[PMID: 7556020 ]
Bioessays. 2021 Mar;43(3):e2000222
[PMID: 33210313 ]
Biol Lett. 2016 Oct;12(10):
[PMID: 28120799 ]
Cancer Res. 1952 Dec;12(12):890-9
[PMID: 13009677 ]
Ecology. 2016 Feb;97(2):394-405
[PMID: 27145614 ]
J Vet Diagn Invest. 2015 Jul;27(4):408-13
[PMID: 26077547 ]
Mol Ecol. 1995 Dec;4(6):791-2
[PMID: 8564014 ]
PLoS One. 2010 Sep 29;5(9):
[PMID: 20927370 ]
Am J Pathol. 1969 May;55(2):191-202
[PMID: 5780697 ]
Commun Biol. 2021 Feb 1;4(1):152
[PMID: 33526843 ]
Oncogene. 2008 Dec;27 Suppl 2:S19-30
[PMID: 19956175 ]
Cancer Res. 1988 Jul 1;48(13):3828-33
[PMID: 3132323 ]
Evolution. 2009 Sep;63(9):2340-9
[PMID: 19453727 ]
Aquat Toxicol. 2016 Jan;170:42-51
[PMID: 26615366 ]
Wellcome Open Res. 2017 Jun 22;2:46
[PMID: 28948233 ]
PLoS Pathog. 2016 Oct 27;12(10):e1005904
[PMID: 27788268 ]
Dis Aquat Organ. 2019 Oct 17;136(2):175-182
[PMID: 31621650 ]
Cancer Res. 1948 Dec;8(12):657-753
[PMID: 18119893 ]
Nat Rev Cancer. 2009 Jul;9(7):517-26
[PMID: 19550426 ]
J Zoo Wildl Med. 2005 Sep;36(3):527-30
[PMID: 17312778 ]
Vet J. 2016 Jun;212:48-57
[PMID: 27256025 ]
J Virol. 2006 May;80(9):4643; author reply 4343-4
[PMID: 16611925 ]
Elife. 2022 Jan 18;11:
[PMID: 35040778 ]
Br J Pharmacol. 2010 Aug;160(7):1577-9
[PMID: 20649561 ]
J Wildl Dis. 2019 Jan;55(1):169-173
[PMID: 30096036 ]
J Aquat Anim Health. 2000 Mar;12(1):58-63
[PMID: 28880781 ]
Nature. 2006 Feb 2;439(7076):549
[PMID: 16452970 ]
Dis Aquat Organ. 2004 Nov 23;62(1-2):163-76
[PMID: 15648843 ]
Cancer Res. 1957 Oct;17(9):823-32
[PMID: 13472671 ]
Wellcome Open Res. 2021 Sep 2;6:219
[PMID: 34622016 ]
Mol Ecol. 2022 Feb;31(3):736-751
[PMID: 34192383 ]
BMC Evol Biol. 2014 Oct 25;14:206
[PMID: 25342462 ]
J Fish Dis. 2016 Aug;39(8):913-27
[PMID: 26687447 ]
J Fish Dis. 2007 Apr;30(4):251-3
[PMID: 17394528 ]
Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4227-E4235
[PMID: 29669918 ]
Arch Virol. 2000;145(12):2669-76
[PMID: 11205112 ]
Conserv Biol. 2014 Feb;28(1):63-75
[PMID: 24024987 ]
J Wildl Dis. 2005 Jan;41(1):29-41
[PMID: 15827208 ]
Nature. 2016 Jun 30;534(7609):705-9
[PMID: 27338791 ]
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):374-9
[PMID: 26711993 ]
Science. 2014 Jan 24;343(6169):437-440
[PMID: 24458646 ]
Proc Biol Sci. 2018 Nov 28;285(1892):
[PMID: 30487308 ]
Cell. 2006 Aug 11;126(3):477-87
[PMID: 16901782 ]
Virology. 2004 Mar 30;321(1):101-10
[PMID: 15033569 ]
PLoS One. 2016 Dec 9;11(12):e0167632
[PMID: 27936118 ]
PLoS Biol. 2020 Jul 14;18(7):e3000411
[PMID: 32663221 ]
BMC Evol Biol. 2016 Oct 7;16(1):201
[PMID: 27717306 ]
Cell Mol Life Sci. 2020 May;77(9):1847-1858
[PMID: 31375869 ]
Commun Biol. 2018 Jun 7;1:63
[PMID: 30271945 ]
Science. 2010 Jan 1;327(5961):84-7
[PMID: 20044575 ]
Animals (Basel). 2021 Mar 05;11(3):
[PMID: 33807588 ]
Sci Total Environ. 2022 Jan 10;803:149923
[PMID: 34487898 ]
Commun Biol. 2021 May 12;4(1):565
[PMID: 33980988 ]
Sci Rep. 2020 Nov 12;10(1):19696
[PMID: 33184419 ]
Science. 1965 May 28;148(3674):1239-40
[PMID: 14280009 ]
Environ Health Perspect. 2002 Mar;110(3):285-92
[PMID: 11882480 ]
/Wellcome Trust
102942/Z/13/A/Wellcome Trust