Electroacupuncture promotes the survival and synaptic plasticity of hippocampal neurons and improvement of sleep deprivation-induced spatial memory impairment.

Wenya Pei, Fanqi Meng, Qingwen Deng, Baobao Zhang, Yuan Gu, Boyu Jiao, Haoyu Xu, Jiuqing Tan, Xin Zhou, Zhiling Li, Guanheng He, Jingwen Ruan, Ying Ding
Author Information
  1. Wenya Pei: Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
  2. Fanqi Meng: Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
  3. Qingwen Deng: Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
  4. Baobao Zhang: Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
  5. Yuan Gu: Guangzhou Provincial Hospital of Chinese Medicine, Guangzhou, China.
  6. Boyu Jiao: Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
  7. Haoyu Xu: Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
  8. Jiuqing Tan: Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
  9. Xin Zhou: Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
  10. Zhiling Li: Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
  11. Guanheng He: Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
  12. Jingwen Ruan: Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. ORCID
  13. Ying Ding: Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Abstract

AIMS: This study aimed to investigate whether electroacupuncture (EA) promotes the survival and synaptic plasticity of hippocampal neurons by activating brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase (TrkB)/extracellular signal-regulated kinase (Erk) signaling, thereby improving spatial memory deficits in rats under SD.
METHODS: In vivo, Morris water maze (MWM) was used to detect the effect of EA on learning and memory, at the same time Western blotting (WB), immunofluorescence (IF), and transmission electron microscopy (TEM) were used to explore the plasticity of hippocampal neurons and synapses, and the expression of BDNF/TrkB/Erk signaling. In vitro, cultured hippocampal neurons were treated with exogenous BDNF and the TrkB inhibitor K252a to confirm the relationship between BDNF/TrkB/Erk signaling and synaptic plasticity.
RESULTS: Our results showed that EA mitigated the loss of hippocampal neurons and synapses, stimulated hippocampal neurogenesis, and improved learning and memory of rats under SD accompanied by upregulation of BDNF and increased phosphorylation of TrkB and Erk. In cultured hippocampal neurons, exogenous BDNF enhanced the expression of synaptic proteins, the frequency of the postsynaptic currents, and the phosphorylation of TrkB and Erk; these effects were reversed by treatment with K252a.
CONCLUSIONS: Electroacupuncture alleviates SD-induced spatial memory impairment by promoting hippocampal neurogenesis and synaptic plasticity via activation of BDNF/TrkB/Erk signaling, which provided evidence for EA as a therapeutic strategy for countering the adverse effects of SD on cognition.

Keywords

References

  1. Science. 2019 Oct 11;366(6462): [PMID: 31601740]
  2. Sleep Med Rev. 2006 Feb;10(1):49-62 [PMID: 16376591]
  3. Cell Mol Neurobiol. 2015 Nov;35(8):1093-103 [PMID: 25976178]
  4. J Sleep Res. 2010 Jun;19(2):280-8 [PMID: 20050994]
  5. Neural Plast. 2019 May 15;2019:2823679 [PMID: 31223308]
  6. Neuron. 2011 May 26;70(4):687-702 [PMID: 21609825]
  7. Ageing Res Rev. 2004 Nov;3(4):407-30 [PMID: 15541709]
  8. Neuroscience. 2007 Aug 10;148(1):325-33 [PMID: 17630219]
  9. Eur J Neurosci. 2005 Oct;22(8):2111-6 [PMID: 16262649]
  10. Hippocampus. 2006;16(3):199-207 [PMID: 16411231]
  11. CNS Neurosci Ther. 2021 Dec;27(12):1472-1482 [PMID: 34623740]
  12. Neuron. 2014 Oct 22;84(2):416-31 [PMID: 25374362]
  13. Neuroscience. 2015 Nov 19;309:173-90 [PMID: 25937398]
  14. J Neurosci. 2007 May 9;27(19):5179-89 [PMID: 17494704]
  15. J Neuroinflammation. 2020 Jul 14;17(1):210 [PMID: 32664974]
  16. J Sleep Res. 2018 Feb;27(1):73-77 [PMID: 28656632]
  17. Sleep. 2019 Jan 1;42(1): [PMID: 30346599]
  18. Nat Protoc. 2006;1(3):1399-405 [PMID: 17406427]
  19. Sleep. 2009 Aug;32(8):1039-47 [PMID: 19725255]
  20. CNS Neurosci Ther. 2018 Jan;24(1):39-46 [PMID: 29110407]
  21. Physiol Genomics. 2010 Aug;42(3):427-36 [PMID: 20501693]
  22. Zhongguo Zhen Jiu. 2006 Mar;26(3):186-8 [PMID: 16570439]
  23. CNS Neurosci Ther. 2018 Dec;24(12):1264-1274 [PMID: 30278105]
  24. Cell. 2013 Dec 19;155(7):1596-609 [PMID: 24360280]
  25. Front Neurosci. 2020 Sep 29;14:525144 [PMID: 33132818]
  26. Science. 2019 Oct 11;366(6462):189-190 [PMID: 31601760]
  27. J Neurosci. 2002 Mar 1;22(5):1532-40 [PMID: 11880483]
  28. Stem Cell Reports. 2019 Feb 12;12(2):274-289 [PMID: 30661994]
  29. Curr Neuropharmacol. 2009 Dec;7(4):276-85 [PMID: 20514207]
  30. Autophagy. 2021 Nov;17(11):3833-3847 [PMID: 33622188]
  31. J Cereb Blood Flow Metab. 2020 Sep;40(9):1769-1777 [PMID: 32663096]
  32. Elife. 2016 Aug 23;5: [PMID: 27549340]
  33. Nat Neurosci. 2010 Mar;13(3):302-9 [PMID: 20173744]
  34. Neuroscience. 2010 Sep 29;170(1):247-58 [PMID: 20600652]
  35. Nat Rev Neurosci. 2007 Jun;8(6):481-8 [PMID: 17514200]
  36. Sleep Med Rev. 2009 Jun;13(3):187-94 [PMID: 18848476]
  37. Pharmacol Res. 2012 Aug;66(2):105-43 [PMID: 22569528]
  38. Annu Rev Biochem. 2003;72:609-42 [PMID: 12676795]
  39. Science. 2019 Oct 11;366(6462): [PMID: 31601739]
  40. Trends Neurosci. 2005 May;28(5):248-54 [PMID: 15866199]
  41. J Cell Biochem. 2010 Apr 1;109(5):850-7 [PMID: 20082320]
  42. Int J Neuropsychopharmacol. 2013 Mar;16(2):301-11 [PMID: 22676966]
  43. Prog Neurobiol. 2003 Feb;69(2):71-101 [PMID: 12684067]
  44. Learn Mem. 2002 Sep-Oct;9(5):224-37 [PMID: 12359832]
  45. Brain Res. 1978 May 19;147(1):47-63 [PMID: 207385]
  46. Sleep. 2011 Jun 01;34(6):807-15 [PMID: 21629370]
  47. Curr Biol. 2013 Sep 9;23(17):R774-88 [PMID: 24028961]
  48. Nat Rev Neurosci. 2013 Jun;14(6):401-16 [PMID: 23674053]
  49. Annu Rev Neurosci. 2001;24:677-736 [PMID: 11520916]
  50. Front Cell Neurosci. 2019 Jun 21;13:275 [PMID: 31293390]
  51. J Neuroinflammation. 2019 Dec 13;16(1):264 [PMID: 31836020]
  52. Learn Mem. 2004 Mar-Apr;11(2):172-8 [PMID: 15054132]
  53. Bratisl Lek Listy. 2012;113(10):583-8 [PMID: 23094894]
  54. Nat Rev Neurosci. 2003 Apr;4(4):299-309 [PMID: 12671646]
  55. Curr Top Behav Neurosci. 2015;25:331-66 [PMID: 24549722]
  56. Chin Med J (Engl). 2009 Dec 5;122(23):2869-73 [PMID: 20092793]
  57. BMC Neurosci. 2009 Apr 20;10:35 [PMID: 19374777]
  58. Braz J Med Biol Res. 1998 May;31(5):675-80 [PMID: 9698774]
  59. J Comp Neurol. 2020 Feb 15;528(3):380-388 [PMID: 31454077]
  60. Synapse. 2015 Jan;69(1):15-25 [PMID: 25179486]

MeSH Term

Animals
Behavior, Animal
Brain-Derived Neurotrophic Factor
Cell Survival
Cells, Cultured
Electroacupuncture
Hippocampus
Male
Memory Disorders
Neuronal Plasticity
Neurons
Rats
Rats, Sprague-Dawley
Sleep Deprivation
Spatial Memory

Chemicals

Bdnf protein, rat
Brain-Derived Neurotrophic Factor

Word Cloud

Created with Highcharts 10.0.0hippocampalsynapticplasticityneuronsmemoryEABDNFTrkBsignalingErkspatialSDBDNF/TrkB/Erkimpairmentelectroacupuncturepromotessurvivalbrain-derivedneurotrophicfactorkinaseratsusedlearningsynapsesexpressionculturedexogenousK252aneurogenesisphosphorylationeffectsElectroacupuncturesleepAIMS:studyaimedinvestigatewhetheractivating/tyrosinereceptor/extracellularsignal-regulatedtherebyimprovingdeficitsMETHODS:vivoMorriswatermazeMWMdetecteffecttimeWesternblottingWBimmunofluorescenceIFtransmissionelectronmicroscopyTEMexplorevitrotreatedinhibitorconfirmrelationshipRESULTS:resultsshowedmitigatedlossstimulatedimprovedaccompaniedupregulationincreasedenhancedproteinsfrequencypostsynapticcurrentsreversedtreatmentCONCLUSIONS:alleviatesSD-inducedpromotingviaactivationprovidedevidencetherapeuticstrategycounteringadversecognitionimprovementdeprivation-inducedneurondeprivation

Similar Articles

Cited By