Engineering gene overlaps to sustain genetic constructs in vivo.
Antoine L Decrulle, Antoine Frénoy, Thomas A Meiller-Legrand, Aude Bernheim, Chantal Lotton, Arnaud Gutierrez, Ariel B Lindner
Author Information
Antoine L Decrulle: Université de Paris, INSERM U1001, Paris, France.
Antoine Frénoy: Université de Paris, INSERM U1001, Paris, France. ORCID
Thomas A Meiller-Legrand: Université de Paris, INSERM U1001, Paris, France. ORCID
Aude Bernheim: Université de Paris, INSERM U1001, Paris, France. ORCID
Chantal Lotton: Université de Paris, INSERM U1001, Paris, France.
Arnaud Gutierrez: Université de Paris, INSERM U1001, Paris, France. ORCID
Ariel B Lindner: Université de Paris, INSERM U1001, Paris, France.
中文译文
English
Evolution is often an obstacle to the engineering of stable biological systems due to the selection of mutations inactivating costly gene circuits. Gene overlaps induce important constraints on sequences and their evolution. We show that these constraints can be harnessed to increase the stability of costly genes by purging loss-of-function mutations. We combine computational and synthetic biology approaches to rationally design an overlapping reading frame expressing an essential gene within an existing gene to protect. Our algorithm succeeded in creating overlapping reading frames in 80% of E. coli genes. Experimentally, scoring mutations in both genes of such overlapping construct, we found that a significant fraction of mutations impacting the gene to protect have a deleterious effect on the essential gene. Such an overlap thus protects a costly gene from removal by natural selection by associating the benefit of this removal with a larger or even lethal cost. In our synthetic constructs, the overlap converts many of the possible mutants into evolutionary dead-ends, reducing the evolutionary potential of the system and thus increasing its stability over time.
Mol Biol Evol. 2007 Oct;24(10):2344-53
[PMID: 17709335 ]
Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8396-401
[PMID: 15159545 ]
Nature. 2008 Jan 3;451(7174):86-9
[PMID: 18172501 ]
Nature. 1997 Jun 12;387(6634):700-2
[PMID: 9192893 ]
Mol Syst Biol. 2005;1:2005.0018
[PMID: 16729053 ]
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5724-9
[PMID: 12719542 ]
Nat Commun. 2018 Feb 20;9(1):787
[PMID: 29463788 ]
Genome Res. 2004 Feb;14(2):280-6
[PMID: 14762064 ]
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2504-8
[PMID: 267943 ]
Nat Chem Biol. 2016 Feb;12(2):82-6
[PMID: 26641934 ]
Microb Cell Fact. 2010 May 21;9:38
[PMID: 20492662 ]
Artif Life. 2005 Fall;11(4):427-43
[PMID: 16197672 ]
EMBO Rep. 2018 Apr;19(4):
[PMID: 29581172 ]
Nature. 1976 Nov 4;264(5581):34-41
[PMID: 1004533 ]
Proc Natl Acad Sci U S A. 1987 Sep;84(17):6220-4
[PMID: 3306672 ]
Nat Biotechnol. 2009 Dec;27(12):1099-102
[PMID: 20010584 ]
PLoS Comput Biol. 2013;9(11):e1003339
[PMID: 24278000 ]
Science. 2015 Sep 4;349(6252):1095-100
[PMID: 26272907 ]
Methods Enzymol. 2011;498:19-42
[PMID: 21601672 ]
J Biol Chem. 1976 Apr 25;251(8):2499-510
[PMID: 816792 ]
Genetics. 1994 Mar;136(3):1209-16
[PMID: 8005425 ]
J Theor Biol. 2017 Feb 21;415:90-101
[PMID: 27737786 ]
Evolution. 2000 Jun;54(3):731-9
[PMID: 10937248 ]
J Biol Eng. 2010 Nov 01;4:12
[PMID: 21040586 ]
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342-6
[PMID: 4598299 ]
Genetics. 1991 Nov;129(3):957-62
[PMID: 1752431 ]
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83
[PMID: 22991466 ]
ACS Synth Biol. 2019 Mar 15;8(3):521-531
[PMID: 30703321 ]
Cell. 2019 Nov 27;179(6):1255-1263.e12
[PMID: 31778652 ]
J Virol. 2007 Dec;81(23):12979-84
[PMID: 17898073 ]
Genetics. 1943 Nov;28(6):491-511
[PMID: 17247100 ]
Cell. 1979 Oct;18(2):247-56
[PMID: 498271 ]
DNA Res. 2005;12(5):291-9
[PMID: 16769691 ]
Mol Biosyst. 2014 Jul;10(7):1668-78
[PMID: 24556867 ]
Mol Cell. 2017 Nov 16;68(4):686-697.e3
[PMID: 29149596 ]
FEBS Lett. 1968 Nov;2(1):57-60
[PMID: 11946268 ]
Nucleic Acids Res. 2013 Jan 7;41(1):e33
[PMID: 23093602 ]
Nature. 1982 Feb 18;295(5850):616-8
[PMID: 6799842 ]
J Mol Biol. 1989 May 20;207(2):365-77
[PMID: 2474074 ]
Science. 2019 Aug 9;365(6453):595-598
[PMID: 31395784 ]
Science. 1996 Nov 15;274(5290):1208-11
[PMID: 8895473 ]
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2347-2352
[PMID: 29463739 ]
Nucleic Acids Res. 2005 Feb 24;33(4):e36
[PMID: 15731329 ]
Nature. 1997 Jun 12;387(6634):703-5
[PMID: 9192894 ]
Nat Biotechnol. 2004 May;22(5):583-8
[PMID: 15077119 ]
Nucleic Acids Res. 2018 Sep 28;46(17):9236-9250
[PMID: 30137492 ]
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13067-72
[PMID: 23878237 ]
Virology. 2012 Dec 20;434(2):278-84
[PMID: 23079106 ]
J Bacteriol. 1975 Jan;121(1):259-66
[PMID: 1090571 ]
Science. 1988 Mar 18;239(4846):1420-2
[PMID: 3347840 ]
Genetics. 2010 Jun;185(2):603-9
[PMID: 20382832 ]
J Biol Chem. 1989 Feb 5;264(4):2228-35
[PMID: 2644257 ]
Nucleic Acids Res. 2000 Jan 1;28(1):33-6
[PMID: 10592175 ]
Nature. 1978 Apr 6;272(5653):532-5
[PMID: 692657 ]
Naturwissenschaften. 1977 Nov;64(11):541-65
[PMID: 593400 ]
Proc Biol Sci. 2010 Dec 22;277(1701):3809-17
[PMID: 20610432 ]
J Bacteriol. 1948 Nov;56(5):695
[PMID: 16561620 ]
Trends Biochem Sci. 2003 Oct;28(10):521-3
[PMID: 14559179 ]
Nucleic Acids Res. 2015 Feb 18;43(3):1945-54
[PMID: 25567985 ]
J Mol Biol. 1994 Jul 29;240(5):421-33
[PMID: 8046748 ]
Microb Biotechnol. 2019 Jan;12(1):41-43
[PMID: 30461203 ]
Mol Biol Evol. 2013 Aug;30(8):1916-28
[PMID: 23686658 ]
Biochemistry. 1994 Jun 7;33(22):6936-44
[PMID: 8204627 ]
Nat Biotechnol. 2003 Jul;21(7):796-802
[PMID: 12778056 ]
Comput Biol Chem. 2005 Feb;29(1):1-12
[PMID: 15680581 ]
Nat Biotechnol. 2004 Oct;22(10):1302-6
[PMID: 15361882 ]
Nat Rev Microbiol. 2014 May;12(5):381-90
[PMID: 24686414 ]
Science. 1997 Sep 19;277(5333):1833-4
[PMID: 9324769 ]
Trends Genet. 2017 Dec;33(12):910-920
[PMID: 29029851 ]
Algorithms
Escherichia coli
Evolution, Molecular
Genes, Essential
Genetic Engineering
Genomics
Mutation
Reading Frames
Sequence Analysis, DNA
Synthetic Biology