Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint.

Charly Jehan, Camille Sabarly, Thierry Rigaud, Yannick Moret
Author Information
  1. Charly Jehan: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France. ORCID
  2. Camille Sabarly: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France.
  3. Thierry Rigaud: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France. ORCID
  4. Yannick Moret: UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France. ORCID

Abstract

The terminal investment hypothesis predicts that as an organism's prospects for survival decrease, through age or when exposed to a pathogenic infection, it will invest more in reproduction, which should trade-off against somatic maintenance (including immunity) and therefore future survival. Attempts to test this hypothesis have produced mixed results, which, in addition, mainly rely on the assessment of changes in reproductive effort and often overlooking its impact on somatic defences and survival. Alternatively, animals may restrain current reproduction to sustain somatic protection, increasing the chance of surviving for additional reproductive opportunities. We tested both of these hypotheses in females of the yellow mealworm beetle, Tenebrio molitor, an iteroparous insect with reproductive tactics similar to that of long-lived organisms. To achieve this, we mimicked pathogenic bacterial infections early or late in the life of breeding females by injecting them with a suspension of inactivated Bacillus cereus, a known natural pathogen of T. molitor, and measured female age-specific fecundity, survival, body mass and immunity. Inconsistent with a terminal investment, females given either an early or late-life immune challenge did not exhibit reduced survival or enhance their reproductive output. Female fecundity declined with age and was reduced by the early but not the late immune challenge. Both early and late-life fecundity correlated positively with life expectancy. Finally, young and old females exhibited similar antibacterial immune responses, suggesting that they both restrained reproduction to sustain immunity. Our results clearly demonstrate that age-specific reproduction of T. molitor females under pathogenic threat is inconsistent with a terminal investment. In contrast, our results instead suggest that females used a reproductive restraint strategy to sustain immunity and therefore subsequent reproductive opportunities. However, as infections were mimicked only, the fitness benefit of this reproductive restraint could not be shown.

Keywords

References

  1. Adamo, S. A. (1999). Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Animal Behaviour, 57, 117-124. https://doi.org/10.1006/anbe.1998.0999
  2. Agnew, P., C. Koella, J., & Michalakis, Y. (2000). Host life history responses to parasitism. Microbes and Infection, 2, 891-896. https://doi.org/10.1016/s1286-4579(00)00389-0
  3. Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349-368. https://doi.org/10.1038/hdy.1948.21
  4. Behrens, S., Peuß, R., Milutinović, B., Eggert, H., Esser, D., Rosenstiel, P., Schulenburg, H., Bornberg-Bauer, E., & Kurtz, J. (2014). Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis. BMC Genomics, 15, 445. https://doi.org/10.1186/1471-2164-15-445
  5. Blair, L., & Webster, J. P. (2007). Dose-dependent schistosome-induced mortality and morbidity risk elevates host reproductive effort. Journal of Evolutionary Biology, 20, 54-61. https://doi.org/10.1111/j.1420-9101.2006.01230.x
  6. Bonneaud, C., Mazuc, J., Chastel, O., Westerdahl, H., & Sorci, G. (2004). Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution, 58, 2823-2830. https://doi.org/10.1111/j.0014-3820.2004.tb01633.x
  7. Brannelly, L. A., Webb, R. J., Jiang, Z., Berger, L., Skerratt, L. F., & Grogan, L. F. (2021). Declining amphibians might be evolving increased reproductive effort in the face of devastating disease. Evolution, 75(10), 2555-2567. https://doi.org/10.1111/evo.14327
  8. Bulet, P., Cociancich, S., Reuland, M., Sauber, F., Bischoff, R., Hegy, G., Van Dorsselaer, A., Hetru, C., & Hoffmann, J. A. (1992). A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). European Journal of Biochemistry, 209, 977-984. https://doi.org/10.1111/j.1432-1033.1992.tb17371.x
  9. Chadwick, W., & Little, T. J. (2005). A parasite-mediated life-history shift in Daphnia magna. Proceedings of the Royal Society B: Biological Sciences, 272, 505-509. https://doi.org/10.1098/rspb.2004.2959
  10. Charlesworth, B., & Léon, J. A. (1976). The relation of reproductive effort to age. The American Naturalist, 110, 449-459. https://doi.org/10.1086/283079
  11. Clutton-Brock, T. H. (1984). Reproductive effort and terminal investment in iteroparous animals. The American Naturalist, 123, 212-229. https://doi.org/10.1086/284198
  12. Coustau, C., Kurtz, J., & Moret, Y. (2016). A novel mechanism of immune memory unveiled at the invertebrate-parasite interface. Trends in Parasitology, 32, 353-355. https://doi.org/10.1016/j.pt.2016.02.005
  13. Curio, E. (1983). Why de young birds reproduce less well? Ibis, 125, 400-404. https://doi.org/10.1111/j.1474-919X.1983.tb03130.x
  14. Dhinaut, J., Chogne, M., & Moret, Y. (2018). Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. The Journal of Animal Ecology, 87, 448-463. https://doi.org/10.1111/1365-2656.12661
  15. Dick, J. (1937). Oviposition in certain Coleoptera. Annals of Applied Biology, 24, 762-796. https://doi.org/10.1111/j.1744-7348.1937.tb05055.x
  16. Drnevich, J. M., Papke, R. S., Rauser, C. L., & Rutowski, R. L. (2001). Material benefits from multiple mating in female mealworm beetles (Tenebrio molitor L.). Journal of Insect Behavior, 14, 215-230. https://doi.org/10.1023/A:1007889712054
  17. Du, N., & Laing, M. (2011). Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). African Journal of Microbiology Research, 15, 2222-2228.
  18. Dubuffet, A., Zanchi, C., Boutet, G., Moreau, J., Teixeira, M., & Moret, Y. (2015). Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Path, 11, e1005178. https://doi.org/10.1371/journal.ppat.1005178
  19. Duffield, K. R., Bowers, E. K., Sakaluk, S. K., & Sadd, B. M. (2017). A dynamic threshold model for terminal investment. Behavioral Ecology and Sociobiology, 71, 185. https://doi.org/10.1007/s00265-017-2416-z
  20. Duffield, K. R., Hampton, K. J., Houslay, T. M., Hunt, J., Rapkin, J., Sakaluk, S. K., & Sadd, B. M. (2018). Age-dependent variation in the terminal investment threshold in male crickets. Evolution, 72, 578-589. https://doi.org/10.1111/evo.13443
  21. Farchmin, P. A., Eggert, A. K., Duffield, K. R., & Sakaluk, S. K. (2020). Dynamic terminal investment in male burying beetles. Animal Behaviour, 163, 1-7. https://doi.org/10.1016/j.anbehav.2020.02.015
  22. Forbes, M. R. L. (1993). Parasitism and host reproductive effort. Oikos, 67, 444-450. https://doi.org/10.2307/3545356
  23. Gao, K., van Wijk, M., Dang, Q. T. D., Heckel, D. G., Zalucki, M. P., & Groot, A. T. (2021). How healthy is your mate? Sex-specific consequences of parasite infections in the moth Helicoverpa armigera. Animal Behaviour, 178, 105-113. https://doi.org/10.1016/j.anbehav.2021.06.005
  24. Giehr, J., Grasse, A. V., Cremer, S., Heinze, J., & Schrempf, A. (2017). Ant queens increase their reproductive efforts after pathogen infection. Royal Society Open Science, 4, 170547. https://doi.org/10.1098/rsos.170547
  25. Grenfell, B. T., & Dobson, A. P. (Eds.). (1995). Ecology of infectious diseases in natural populations. Cambridge University Press. https://doi.org/10.1017/CBO9780511629396
  26. Haine, E. R., Pollitt, L. C., Moret, Y., Siva-Jothy, M. T., & Rolff, J. (2008). Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). Journal of Insect Physiology, 54, 1090-1097. https://doi.org/10.1016/j.jinsphys.2008.04.013
  27. Hamel, S., Gaillard, J.-M., Yoccoz, N. G., Loison, A., Bonenfant, C., & Descamps, S. (2010). Fitness costs of reproduction depend on life speed: Empirical evidence from mammalian populations. Ecology Letters, 13, 915-935. https://doi.org/10.1111/j.1461-0248. 2010.01478.x
  28. Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science, 218, 384-387. https://doi.org/10.1126/science.7123238
  29. Hayward, A., Wilson, A., Pilkington, J., Clutton-Brock, T., Pemberton, J., & Kruuk, L. (2013). Reproductive senescence in female Soay sheep: Variation across traits and contributions of individual ageing and selective disappearance. Functional Ecology, 27, 184-195. https://doi.org/10.1111/1365-2435.12029
  30. Hirshfield, M. F., & Tinkle, D. W. (1975). Natural selection and the evolution of reproductive effort. Proceedings of National Academy of Sciences of the United States of America, 72, 2227-2231. https://doi.org/10.1073/pnas.72.6.2227
  31. Hochberg, M. E., Michalakis, Y., & Meeus, T. D. (1992). Parasitism as a constraint on the rate of life-history evolution. Journal of Evolutionary Biology, 5, 491-504. https://doi.org/10.1046/j.1420-9101.1992. 5030491.x
  32. Hughes, P. W. (2017). Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecology and Evolution, 7, 8232-8261. https://doi.org/10.1002/ece3.3341
  33. Jehan, C., Chogne, M., Rigaud, T., & Moret, Y. (2020). Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort. BMC Evolutionary Biology, 20, 18. https://doi.org/10.1186/s12862-020-1586-x
  34. Jehan, C., Sabarly, C., Rigaud, T., & Moret, Y. (2021a). Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. Journal of Animal Ecology, 90, 282-297. https://doi.org/10.1111/1365-2656.13367
  35. Jehan, C., Sabarly, C., Rigaud, T., & Moret, Y. (2021b). Data from: Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. Dryad Digital Repository, https://doi.org/10.5061/dryad.r7sqv9sbq
  36. Jönsson, K. I., & Jonsson, K. I. (1997). Capital and income breeding as alternative tactics of resource use in reproduction. Oikos, 78, 57-66. https://doi.org/10.2307/3545800
  37. Jurat-Fuentes, J. L., & Jackson, T. A. (2012). Chapter 8 - Bacterial entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (2nd ed., pp. 265-349). Academic Press. https://doi.org/10.1016/B978-0-12-384984-7.00008-7
  38. Khan, I., Agashe, D., & Rolff, J. (2017). Early-life inflammation, immune response and ageing. Proceedings of the Royal Society B: Biological Sciences, 284, 20170125. https://doi.org/10.1098/rspb.2017.0125
  39. Kivleniece, I., Krams, I., Daukšte, J., Krama, T., & Rantala, M. J. (2010). Sexual attractiveness of immune-challenged male mealworm beetles suggests terminal investment in reproduction. Animal Behaviour, 80, 1015-1021. https://doi.org/10.1016/j.anbehav.2010.09.004
  40. Krams, I., Daukšte, J., Kivleniece, I., Krama, T., Rantala, M., Ramey, G., & Šauša, L. (2011). Female choice reveals terminal investment in male mealworm beetles, Tenebrio molitor, after a repeated activation of the immune system. Journal of Insect Science, 11. https://doi.org/10.1673/031.011.5601
  41. Lui, K. J. (1998). Interval estimation of the risk ratio between a secondary infection, given a primary infection, and the primary infection. Biometrics, 54, 706-711. https://doi.org/10.2307/3109776
  42. Martins, N. E., Faria, V. G., Teixeira, L., Magalhães, S., & Sucena, É. (2013). Host Adaptation is contingent upon the infection route taken by pathogens. PLoS Path, 9, e1003601. https://doi.org/10.1371/journal.ppat.1003601
  43. McDade, T. W., Georgiev, A. V., & Kuzawa, C. W. (2016). Trade-offs between acquired and innate immune defenses in humans. Evolution, Medicine, and Public Health, 2016, 1-16. https://doi.org/10.1093/emph/eov033
  44. McNamara, J. M., Houston, A. I., Barta, Z., Scheuerlein, A., & Fromhage, L. (2009). Deterioration, death and the evolution of reproductive restraint in late life. Proceedings of the Royal Society B: Biological Sciences, 276, 4061-4066. https://doi.org/10.1098/rspb.2009.0959
  45. Milutinović, B., & Kurtz, J. (2016). Immune memory in invertebrates. Seminars in Immunology, 28, 328-342. https://doi.org/10.1016/j.smim.2016.05.004
  46. Minchella, D. J. (1985). Host life-history variation in response to parasitism. Parasitology, 90, 205-216. https://doi.org/10.1017/S0031182000049143
  47. Minchella, D. J., & Loverde, P. T. (1981). A cost of increased early reproductive effort in the snail Biomphalaria glabrata. The American Naturalist, 118, 876-881. https://doi.org/10.1086/283879
  48. Moreau, J., Martinaud, G., Troussard, J.-P., Zanchi, C., & Moret, Y. (2012). Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos, 121, 1828-1832. https://doi.org/10.1111/j.1600-0706.2011.19933.x
  49. Moret, Y. (2003). Explaining variable costs of the immune response: Selection for specific versus non-specific immunity and facultative life history change. Oikos, 102, 213-216. https://doi.org/10.1034/j.1600-0706.2003.12496.x
  50. Moret, Y. (2006). ‘Trans-generational immune priming’: Specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society B: Biological Sciences, 273, 1399-1405. https://doi.org/10.1098/rspb.2006.3465
  51. Moret, Y., & Schmid-Hempel, P. (2000). Survival for immunity: The price of immune system activation for bumblebee workers. Science, 290, 1166-1168. https://doi.org/10.1126/science.290.5494.1166
  52. Moret, Y., & Schmid-Hempel, P. (2004). Social life history response to individual immune-challenge of workers of Bombus terrestris L.: A possible new cooperative phenomenon. Ecology Letters, 7, 146-152. https://doi.org/10.1046/j.1461-0248.2003.00561.x
  53. Moret, Y., & Siva-Jothy, M. T. (2003). Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society B: Biological Sciences, 270, 2475-2480. https://doi.org/10.1098/rspb.2003.2511
  54. Norris, K., & Evans, M. R. (2000). Ecological immunology: Life history trade-offs and immune defense in birds. Behavioral Ecology, 11, 19-26. https://doi.org/10.1093/beheco/11.1.19
  55. Nussey, D. H., Coulson, T., Delorme, D., Clutton-Brock, T. H., Pemberton, J. M., Festa-Bianchet, M., & Gaillard, J. (2011). Patterns of body mass senescence and selective disappearance differ among three species of free-living ungulates. Ecology, 92, 1936-1947. https://doi.org/10.1890/11-0308.1
  56. Nussey, D. H., Coulson, T., Festa-Bianchet, M., & Gaillard, J.-M. (2008). Measuring senescence in wild animal populations: Towards a longitudinal approach. Functional Ecology, 22, 393-406. https://doi.org/10.1111/j.1365-2435.2008.01408.x
  57. Perrin, N., Christe, P., & Richner, H. (1996). On host life-history response to parasitism. Oikos, 75, 317-320. https://doi.org/10.2307/3546256
  58. Punzo, F. (1975). Effects of temperature, moisture and thermal acclimation on the biology of Tenebrio molitor (Coleoptera: Tenebrionidae) (PhD Thesis) Iowa State University. https://lib.dr.iastate.edu/rtd/5438
  59. Pursall, E. R., & Rolff, J. (2011). Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE, 6, e19972. https://doi.org/10.1371/journal.pone.0019972
  60. R Core Team. (2020). A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
  61. Ribeiro, N., Abelho, M., & Costa, R. (2018). A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Entomological Science, 53, 434-454. https://doi.org/10.18474/JES17-67.1
  62. Roff, D. (1993). Evolution of life histories: Theory and analysis. Springer US. Retrieved from https://www.springer.com/gp/book/9780412023910
  63. Sadd, B. M., Holman, L., Armitage, H., Lock, F., Marland, R., & Siva-Jothy, M. T. (2006). Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): Evidence for terminal investment and dishonesty. Journal of Evolutionary Biology, 19, 321-325. https://doi.org/10.1111/j.1420-9101.2005. 01062.x
  64. Sadd, B. M., & Siva-Jothy, M. T. (2006). Self-harm caused by an insect’s innate immunity. Proceedings of the Royal Society B: Biological Sciences, 273, 2571-2574. https://doi.org/10.1098/rspb.2006.3574
  65. Schwanz, L. E. (2008). Chronic parasitic infection alters reproductive output in deer mice. Behavioral Ecology and Sociobiology, 62, 1351-1358. https://doi.org/10.1007/s00265-008-0563-y
  66. Sheldon, B. C., & Verhulst, S. (1996). Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution, 11, 317-321. https://doi.org/10.1016/0169-5347(96)10039-2
  67. Stearns, S. C. (1992). The evolution of life histories. Oxford University Press.
  68. Tarwater, C. E., & Arcese, P. (2017). Age and years to death disparately influence reproductive allocation in a short-lived bird. Ecology, 98, 2248-2254. https://doi.org/10.1002/ecy.1851
  69. Therneau, T. M. (2020). A package for survival analysis in R. R package version 3.1-12. Retrieved from https://CRAN.R-project.org/package=survival
  70. Urabe, K., Aroca, P., Tsukamoto, K., Mascagna, D., Palumbo, A., Prota, G., & Hearing, V. J. (1994). The inherent cytotoxicity of melanin precursors: A revision. Biochimica Et Biophysica Acta, 1221, 272-278. https://doi.org/10.1016/0167-4889(94)90250-x
  71. van de Pol, M., & Verhulst, S. (2006). Age-dependent traits: A new statistical model to separate within- and between-individual effects. The American Naturalist, 167, 766-773. https://doi.org/10.1086/503331
  72. Vigneron, A., Jehan, C., Rigaud, T., & Moret, Y. (2019). Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Frontiers in Physiology, 10, 138. https://doi.org/10.3389/fphys.2019.00138
  73. Williams, G. C. (1966). Natural selection, the costs of reproduction, and a refinement of Lack’s principle. The American Naturalist, 100, 687-690. https://doi.org/10.1086/282461
  74. Zanchi, C., Moret, Y., & Gillingham, M. A. F. (2019). Relationship between early body condition, energetic reserves and fitness in an iteroparous insect. BioRxiv, 774893. https://doi.org/10.1101/774893

MeSH Term

Age Factors
Animals
Coleoptera
Female
Fertility
Reproduction
Tenebrio

Word Cloud

Created with Highcharts 10.0.0reproductivefemalesinvestmentsurvivalimmunityterminalpathogenicreproductionearlyfecundityrestraintsomaticresultssustainmolitorimmunehypothesisagethereforeopportunitiessimilarmimickedinfectionslatelifeTage-specificlate-lifechallengereducedthreatpredictsorganism'sprospectsdecreaseexposedinfectionwillinvesttrade-offmaintenanceincludingfutureAttemptstestproducedmixedadditionmainlyrelyassessmentchangeseffortoftenoverlookingimpactdefencesAlternativelyanimalsmayrestraincurrentprotectionincreasingchancesurvivingadditionaltestedhypothesesyellowmealwormbeetleTenebrioiteroparousinsecttacticslong-livedorganismsachievebacterialbreedinginjectingsuspensioninactivatedBacilluscereusknownnaturalpathogenmeasuredfemalebodymassInconsistentgiveneitherexhibitenhanceoutputFemaledeclinedcorrelatedpositivelyexpectancyFinallyyoungoldexhibitedantibacterialresponsessuggestingrestrainedclearlydemonstrateinconsistentcontrastinsteadsuggestusedstrategysubsequentHoweverfitnessbenefitshownAge-specificinsect:Terminalversuscostinnatelife-historyshiftsenescence

Similar Articles

Cited By