Conceptual and methodological advances in habitat-selection modeling: guidelines for ecology and evolution.

Joseph M Northrup, Eric Vander Wal, Maegwin Bonar, John Fieberg, Michel P Laforge, Martin Leclerc, Christina M Prokopenko, Brian D Gerber
Author Information
  1. Joseph M Northrup: Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, K9L 1Z8, Canada. ORCID
  2. Eric Vander Wal: Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada. ORCID
  3. Maegwin Bonar: Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9L 1Z8, Canada.
  4. John Fieberg: Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA. ORCID
  5. Michel P Laforge: Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada. ORCID
  6. Martin Leclerc: Département de Biologie, Caribou Ungava and Centre d'études nordiques, Université Laval, Québec, Québec, G1V 0A6, Canada. ORCID
  7. Christina M Prokopenko: Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada. ORCID
  8. Brian D Gerber: Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA. ORCID

Abstract

Habitat selection is a fundamental animal behavior that shapes a wide range of ecological processes, including animal movement, nutrient transfer, trophic dynamics and population distribution. Although habitat selection has been a focus of ecological studies for decades, technological, conceptual and methodological advances over the last 20 yr have led to a surge in studies addressing this process. Despite the substantial literature focused on quantifying the habitat-selection patterns of animals, there is a marked lack of guidance on best analytical practices. The conceptual foundations of the most commonly applied modeling frameworks can be confusing even to those well versed in their application. Furthermore, there has yet to be a synthesis of the advances made over the last 20 yr. Therefore, there is a need for both synthesis of the current state of knowledge on habitat selection, and guidance for those seeking to study this process. Here, we provide an approachable overview and synthesis of the literature on habitat-selection analyses (HSAs) conducted using selection functions, which are by far the most applied modeling framework for understanding the habitat-selection process. This review is purposefully non-technical and focused on understanding without heavy mathematical and statistical notation, which can confuse many practitioners. We offer an overview and history of HSAs, describing the tortuous conceptual path to our current understanding. Through this overview, we also aim to address the areas of greatest confusion in the literature. We synthesize the literature outlining the most exciting conceptual advances in the field of habitat-selection modeling, discussing the substantial ecological and evolutionary inference that can be made using contemporary techniques. We aim for this paper to provide clarity for those navigating the complex literature on HSAs while acting as a reference and best practices guide for practitioners.

Keywords

References

  1. Ecology. 2016 May;97(5):1113-22 [PMID: 27349089]
  2. Ecology. 2006 Dec;87(12):3021-8 [PMID: 17249227]
  3. Oecologia. 2016 Aug;181(4):1101-16 [PMID: 27085998]
  4. Trends Ecol Evol. 2010 Nov;25(11):653-9 [PMID: 20832898]
  5. Mov Ecol. 2013 Aug 05;1(1):6 [PMID: 25709820]
  6. Theor Popul Biol. 2002 May;61(3):277-84 [PMID: 12027614]
  7. J Anim Ecol. 2016 Jan;85(1):11-20 [PMID: 25786026]
  8. Science. 2014 Oct 17;346(6207):346-9 [PMID: 25324387]
  9. Ecology. 2007 Jan;88(1):56-62 [PMID: 17489454]
  10. PLoS One. 2014 Nov 05;9(11):e112251 [PMID: 25372571]
  11. Appl Geogr. 2016 Nov;76:173-183 [PMID: 29887652]
  12. Ecography. 2013 Aug 1;36(8):864-867 [PMID: 25492992]
  13. Ecology. 2009 Oct;90(10):2956-62 [PMID: 19886504]
  14. Ecology. 2015 Oct;96(10):2590-7 [PMID: 26649380]
  15. Behav Ecol. 2017 Jul-Aug;28(4):948-952 [PMID: 29622923]
  16. Ecol Evol. 2018 Aug 19;8(17):9017-9033 [PMID: 30271563]
  17. PLoS One. 2017 May 22;12(5):e0177467 [PMID: 28531202]
  18. Glob Chang Biol. 2015 Nov;21(11):3961-70 [PMID: 26264447]
  19. Oecologia. 2014 Sep;176(1):297-306 [PMID: 25034087]
  20. Ecol Evol. 2018 Feb 28;8(6):3556-3569 [PMID: 29607046]
  21. Oecologia. 2003 Jun;136(1):1-13 [PMID: 12690550]
  22. J Anim Ecol. 2022 May;91(5):946-957 [PMID: 35277858]
  23. Oecologia. 2012 Dec;170(4):965-77 [PMID: 22729651]
  24. Ecol Appl. 2007 Jul;17(5):1424-40 [PMID: 17708219]
  25. Ecology. 2013 Jul;94(7):1456-63 [PMID: 23951705]
  26. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19052-9 [PMID: 19060196]
  27. Ecology. 2015 May;96(5):1182-8 [PMID: 26236833]
  28. Oecologia. 2014 Aug;175(4):1155-65 [PMID: 24913777]
  29. Behav Ecol. 2009 Mar;20(2):416-420 [PMID: 19461866]
  30. PLoS Biol. 2016 Jan 08;14(1):e1002350 [PMID: 26745372]
  31. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19108-13 [PMID: 19060207]
  32. Nature. 1996 Mar 21;380(6571):215-21 [PMID: 8637568]
  33. J R Soc Interface. 2014 Jul 6;11(96): [PMID: 24829284]
  34. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2187-200 [PMID: 20566496]
  35. Proc Biol Sci. 2007 Mar 22;274(1611):839-44 [PMID: 17251094]
  36. PLoS One. 2017 Jun 13;12(6):e0179570 [PMID: 28609466]
  37. Ecol Evol. 2019 Feb 05;9(2):880-890 [PMID: 30766677]
  38. Ecol Lett. 2019 Sep;22(9):1417-1427 [PMID: 31240840]
  39. Ecol Lett. 2009 May;12(5):395-408 [PMID: 19379134]
  40. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2213-9 [PMID: 20566498]
  41. Ecology. 2012 Jun;93(6):1317-29 [PMID: 22834373]
  42. Methods Ecol Evol. 2014 Mar;5(3):253-262 [PMID: 25834721]
  43. J Anim Ecol. 2016 Jan;85(1):21-31 [PMID: 25980987]
  44. Trends Ecol Evol. 1999 Jul;14(7):268-272 [PMID: 10370262]
  45. Ecology. 2020 Mar;101(3):e02953 [PMID: 31840242]
  46. J Anim Ecol. 2013 Jul;82(4):836-45 [PMID: 23461483]
  47. J Anim Ecol. 2021 May;90(5):1027-1043 [PMID: 33583036]
  48. J Anim Ecol. 2013 Nov;82(6):1155-64 [PMID: 23800202]
  49. Ecol Evol. 2017 Jun 14;7(14):5322-5330 [PMID: 28770070]
  50. J Anim Ecol. 2010 Jan;79(1):4-12 [PMID: 19732211]
  51. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2267-78 [PMID: 20566503]
  52. J Anim Ecol. 2010 May;79(3):548-55 [PMID: 20202010]
  53. Ecol Evol. 2017 Jul 06;7(16):6367-6381 [PMID: 28861240]
  54. Trends Ecol Evol. 2012 Aug;27(8):452-61 [PMID: 22727728]
  55. Am Nat. 2010 Jan;175(1):116-25 [PMID: 19922262]
  56. Science. 2015 Jun 12;348(6240):aaa2478 [PMID: 26068858]
  57. Proc Biol Sci. 2019 Apr 24;286(1901):20182911 [PMID: 30991925]
  58. Mov Ecol. 2018 Jul 25;6:14 [PMID: 30062012]
  59. J Anim Ecol. 2013 Nov;82(6):1183-91 [PMID: 24499379]
  60. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2233-44 [PMID: 20566500]
  61. Ecol Evol. 2015 Feb;5(3):709-21 [PMID: 25691992]
  62. Oecologia. 2016 Mar;180(3):697-705 [PMID: 26597548]
  63. Trends Ecol Evol. 2004 Jul;19(7):372-8 [PMID: 16701288]
  64. J Anim Ecol. 2013 Nov;82(6):1120-4 [PMID: 24499378]
  65. Ecol Lett. 2014 Aug;17(8):924-31 [PMID: 24811575]
  66. Ecol Appl. 2016 Dec;26(8):2744-2755 [PMID: 27859842]
  67. Methods Ecol Evol. 2020 Mar;11(3):442-447 [PMID: 32194928]
  68. J R Stat Soc Ser C Appl Stat. 2013 Aug;62(4):551-572 [PMID: 24223435]
  69. Proc Biol Sci. 2011 Aug 22;278(1717):2401-11 [PMID: 21613295]
  70. Ecology. 2019 Jan;100(1):e02452 [PMID: 30047993]
  71. Trends Ecol Evol. 2010 Feb;25(2):81-9 [PMID: 19748700]
  72. J Anim Ecol. 2014 Mar;83(2):343-52 [PMID: 24099266]
  73. Mov Ecol. 2014 Feb 07;2(1):4 [PMID: 25520815]
  74. Evol Appl. 2014 Feb;7(2):301-12 [PMID: 24567749]
  75. Ecology. 2011 Mar;92(3):583-9 [PMID: 21608467]
  76. Ecol Lett. 2006 Nov;9(11):1179-85 [PMID: 17040320]
  77. J Anim Ecol. 2016 Jan;85(1):69-84 [PMID: 25907267]
  78. J Anim Ecol. 2016 Mar;85(2):516-24 [PMID: 26714244]
  79. Ecology. 2009 Dec;90(12):3554-65 [PMID: 20120822]
  80. Am Nat. 2009 Nov;174(5):623-30 [PMID: 19775241]
  81. Trends Ecol Evol. 1996 Feb;11(2):92-8 [PMID: 21237769]
  82. Ecology. 2014 Mar;95(3):631-6 [PMID: 24804445]
  83. Philos Trans R Soc Lond B Biol Sci. 2019 Sep 16;374(1781):20180046 [PMID: 31352884]
  84. J Anim Ecol. 2014 Jan;83(1):147-56 [PMID: 23931034]
  85. J Anim Ecol. 2020 Dec;89(12):2777-2787 [PMID: 32961607]
  86. Ecol Lett. 2017 Jan;20(1):3-18 [PMID: 28000433]
  87. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2245-54 [PMID: 20566501]
  88. J Anim Ecol. 2006 Jul;75(4):887-98 [PMID: 17009752]
  89. Ecol Evol. 2013 Jul;3(7):2030-7 [PMID: 23919149]
  90. Remote Sens Environ. 2017;191:328-341 [PMID: 31346298]
  91. Ecol Appl. 2022 Jan;32(1):e02470 [PMID: 34626518]
  92. Science. 2018 Feb 2;359(6375):568-572 [PMID: 29420288]
  93. PLoS One. 2014 May 27;9(5):e98126 [PMID: 24866172]
  94. Ecology. 2009 Mar;90(3):699-710 [PMID: 19341140]
  95. Ann Appl Stat. 2013 Dec 1;7(4):1917-1939 [PMID: 25493106]
  96. Ecology. 2009 Sep;90(9):2480-90 [PMID: 19769126]
  97. Ecology. 2008 Apr;89(4):1112-9 [PMID: 18481535]
  98. J Anim Ecol. 2020 Jan;89(1):80-92 [PMID: 31454066]
  99. J Anim Ecol. 2013 Nov;82(6):1135-45 [PMID: 23550611]
  100. Biometrics. 2008 Sep;64(3):968-976 [PMID: 18047525]
  101. Ecol Appl. 2012 Jun;22(4):1068-83 [PMID: 22827119]
  102. Anim Behav. 2009 Apr 1;77(4):771-783 [PMID: 24707058]
  103. Ecol Appl. 2019 Apr;29(3):e01852 [PMID: 30653797]
  104. Ecol Evol. 2018 Oct 03;8(22):10893-10901 [PMID: 30519415]
  105. Ecol Lett. 2013 Dec;16(12):1424-35 [PMID: 24134332]
  106. Trends Ecol Evol. 2013 Sep;28(9):552-60 [PMID: 23756104]

MeSH Term

Animals
Behavior, Animal
Data Collection
Ecology
Ecosystem
Movement

Word Cloud

Created with Highcharts 10.0.0selectionliteraturehabitat-selectionconceptualadvancesprocessanimalecologicalmovementhabitatmodelingcansynthesisoverviewHSAsunderstandingstudiesmethodologicallast20 yrsubstantialfocusedguidancebestpracticesappliedmadecurrentprovideusingpractitionersaimecologystep-selectionfunctionHabitatfundamentalbehaviorshapeswiderangeprocessesincludingnutrienttransfertrophicdynamicspopulationdistributionAlthoughfocusdecadestechnologicalledsurgeaddressingDespitequantifyingpatternsanimalsmarkedlackanalyticalfoundationscommonlyframeworksconfusingevenwellversedapplicationFurthermoreyetThereforeneedstateknowledgeseekingstudyapproachableanalysesconductedfunctionsfarframeworkreviewpurposefullynon-technicalwithoutheavymathematicalstatisticalnotationconfusemanyofferhistorydescribingtortuouspathalsoaddressareasgreatestconfusionsynthesizeoutliningexcitingfielddiscussingevolutionaryinferencecontemporarytechniquespaperclaritynavigatingcomplexactingreferenceguideConceptualmodeling:guidelinesevolutionintegratedanalysispointradiocollarresource-selectiontelemetryuse-availabledesignwildlife

Similar Articles

Cited By