Legionella and other opportunistic pathogens in full-scale chloraminated municipal drinking water distribution systems.

Chiqian Zhang, Ian Struewing, Jatin H Mistry, David G Wahman, Jonathan Pressman, Jingrang Lu
Author Information
  1. Chiqian Zhang: Pegasus Technical Services, Inc., Cincinnati, Ohio, USA.
  2. Ian Struewing: Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
  3. Jatin H Mistry: United States Environmental Protection Agency, Region 6, Dallas, Texas, USA.
  4. David G Wahman: Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
  5. Jonathan Pressman: Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
  6. Jingrang Lu: Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA. Electronic address: lu.jingrang@epa.gov.

Abstract

Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 �� 10 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.

Keywords

References

  1. J Appl Microbiol. 2016 Feb;120(2):509-21 [PMID: 26535924]
  2. J Infect Dis. 1984 May;149(5):819 [PMID: 6726009]
  3. Appl Environ Microbiol. 2008 Jul;74(13):3969-76 [PMID: 18469128]
  4. Trends Microbiol. 2014 Dec;22(12):697-706 [PMID: 25199597]
  5. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  6. Environ Sci Pollut Res Int. 2017 Jan;24(3):2326-2336 [PMID: 27815848]
  7. PLoS One. 2017 Feb 17;12(2):e0169448 [PMID: 28212409]
  8. Appl Environ Microbiol. 2010 Jul;76(13):4169-78 [PMID: 20453149]
  9. Environ Res. 2020 Feb;181:108847 [PMID: 31740037]
  10. Water Res. 2012 Mar 1;46(3):882-94 [PMID: 22192761]
  11. Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):3003-3006 [PMID: 22307511]
  12. Front Microbiol. 2014 Sep 24;5:501 [PMID: 25309526]
  13. Parasitol Res. 2019 Jun;118(6):1999-2004 [PMID: 30972570]
  14. Sci Total Environ. 2012 Jun 1;426:366-74 [PMID: 22521167]
  15. Environ Sci Pollut Res Int. 2013 Aug;20(8):5534-44 [PMID: 23436060]
  16. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  17. J Appl Microbiol. 2009 Aug;107(2):368-78 [PMID: 19302312]
  18. Small. 2019 Jan;15(2):e1804436 [PMID: 30536542]
  19. Environ Technol. 2014 Mar-Apr;35(5-8):620-8 [PMID: 24645441]
  20. Environ Res. 2019 Nov;178:108721 [PMID: 31541805]
  21. Appl Environ Microbiol. 2018 Aug 31;84(18): [PMID: 29980559]
  22. Lancet. 1979 Nov 3;2(8149):927-30 [PMID: 91024]
  23. Pathogens. 2020 Sep 16;9(9): [PMID: 32948082]
  24. MMWR Morb Mortal Wkly Rep. 2017 Nov 10;66(44):1216-1221 [PMID: 29121003]
  25. Can J Microbiol. 1994 Dec;40(12):993-9 [PMID: 7704835]
  26. MMWR Morb Mortal Wkly Rep. 2015 Aug 14;64(31):842-8 [PMID: 26270059]
  27. Microorganisms. 2021 Mar 11;9(3): [PMID: 33799845]
  28. Water Res. 2016 Apr 15;93:276-288 [PMID: 26928563]
  29. Microbes Environ. 2015;30(1):108-12 [PMID: 25736979]
  30. Biomed Pharmacother. 2019 Jun;114:108849 [PMID: 30974386]
  31. Appl Environ Microbiol. 2011 Oct;77(20):7321-8 [PMID: 21873489]
  32. Environ Health Perspect. 2015 Aug;123(8):749-58 [PMID: 25793551]
  33. Water Res. 2021 Feb 1;189:116656 [PMID: 33249307]
  34. Int J Food Microbiol. 2004 May 1;92(3):265-74 [PMID: 15145585]
  35. Water Res. 2011 Mar;45(6):2315-21 [PMID: 21316728]
  36. Can J Microbiol. 1999 Aug;45(8):709-15 [PMID: 10528403]
  37. Pathogens. 2020 Jul 13;9(7): [PMID: 32668779]
  38. Genome Announc. 2018 Feb 1;6(5): [PMID: 29437115]
  39. Water Res. 2019 Feb 1;149:640-649 [PMID: 30594003]
  40. Biocontrol Sci. 2019;24(4):213-220 [PMID: 31875613]
  41. Bioinformatics. 2004 Sep 22;20(14):2317-9 [PMID: 15073015]
  42. Int J Syst Bacteriol. 1993 Apr;43(2):329-37 [PMID: 8494743]
  43. BMC Microbiol. 2010 Aug 10;10:215 [PMID: 20698984]
  44. J Appl Microbiol. 2005;98(2):373-9 [PMID: 15659192]
  45. Biomed Environ Sci. 2020 Apr 20;33(4):248-259 [PMID: 32438962]
  46. Int J Hyg Environ Health. 2019 May;222(4):687-694 [PMID: 31085113]
  47. Crit Rev Microbiol. 2016;42(1):65-74 [PMID: 24580080]
  48. J Appl Microbiol. 2019 May;126(5):1568-1579 [PMID: 30891905]
  49. Curr Microbiol. 2008 Nov;57(5):497-502 [PMID: 18839249]
  50. J Environ Sci (China). 2020 Jan;87:331-340 [PMID: 31791506]
  51. Environ Sci Technol. 2004 Jul 1;38(13):3713-22 [PMID: 15296325]
  52. ISME J. 2016 May;10(5):1064-80 [PMID: 26528838]
  53. Trends Microbiol. 1996 Jul;4(7):286-90 [PMID: 8829338]
  54. Biotechnol Annu Rev. 2005;11:355-80 [PMID: 16216783]
  55. Sci Total Environ. 2018 Apr 15;621:948-959 [PMID: 29191692]
  56. Clin Microbiol Rev. 2015 Jan;28(1):95-133 [PMID: 25567224]
  57. Lancet. 1995 Sep 2;346(8975):637-8 [PMID: 7651023]
  58. Int J Environ Res Public Health. 2021 Apr 08;18(8): [PMID: 33917870]
  59. Clin Infect Dis. 2002 Oct 15;35(8):990-8 [PMID: 12355387]
  60. Water Res. 2021 May 15;196:117013 [PMID: 33813251]
  61. Environ Sci Technol. 2012 Nov 6;46(21):11566-74 [PMID: 23046164]
  62. J Clin Microbiol. 2012 Dec;50(12):4178-9 [PMID: 23052303]
  63. Parasitol Res. 2019 Nov;118(11):3191-3194 [PMID: 31511977]
  64. Sci Total Environ. 2021 Apr 10;764:142851 [PMID: 33097267]
  65. Talanta. 2019 Aug 1;200:256-262 [PMID: 31036182]
  66. Pathogens. 2020 Nov 17;9(11): [PMID: 33212943]
  67. Pathogens. 2015 Jun 09;4(2):373-86 [PMID: 26066311]
  68. Appl Environ Microbiol. 2012 Sep;78(17):6285-94 [PMID: 22752174]
  69. J Eukaryot Microbiol. 2021 Sep;68(5):e12857 [PMID: 33987951]
  70. Gut Pathog. 2010 Nov 27;2(1):16 [PMID: 21110894]
  71. Clin Microbiol Rev. 2014 Oct;27(4):927-48 [PMID: 25278578]
  72. Pathogens. 2017 Oct 26;6(4): [PMID: 29072631]
  73. Microb Ecol. 2018 Nov;76(4):991-1001 [PMID: 29737382]
  74. Int J Syst Evol Microbiol. 2019 Jul;69(7):2017-2022 [PMID: 31063123]
  75. Biofouling. 2010;26(2):129-39 [PMID: 19859848]
  76. Environ Sci Technol. 2021 Mar 16;55(6):3775-3785 [PMID: 33645970]
  77. PLoS Negl Trop Dis. 2019 Sep 5;13(9):e0007672 [PMID: 31487283]
  78. BMC Public Health. 2002 Aug 15;2:13 [PMID: 12182763]
  79. Int J Hyg Environ Health. 2010 Jun;213(3):158-66 [PMID: 20403728]
  80. Appl Environ Microbiol. 2006 Jan;72(1):157-66 [PMID: 16391038]
  81. Environ Sci Technol. 2018 Jul 17;52(14):7630-7639 [PMID: 29902377]
  82. BMC Microbiol. 2013 Apr 22;13:89 [PMID: 23601969]
  83. Water Res. 2010 Sep;44(17):4868-77 [PMID: 20696451]
  84. J Clin Microbiol. 2015 Jul;53(7):2180-7 [PMID: 25926494]
  85. J Environ Eng (New York). 2022 Oct 27;149(1):1-12 [PMID: 37593338]
  86. Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3 [PMID: 18792934]
  87. Sci Total Environ. 2020 May 1;715:137043 [PMID: 32041059]
  88. J Chemother. 1994 Apr;6(2):111-6 [PMID: 8077985]
  89. Clin Microbiol Rev. 2010 Jul;23(3):507-28 [PMID: 20610821]
  90. Int J Environ Res Public Health. 2015 Apr 24;12(5):4533-45 [PMID: 25918909]
  91. Biofouling. 2005;21(5-6):279-88 [PMID: 16522541]
  92. Appl Microbiol Biotechnol. 2013 Nov;97(21):9265-76 [PMID: 24068335]
  93. Int J Environ Res Public Health. 2014 Jul 18;11(7):7393-405 [PMID: 25046636]
  94. Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):2946-2954 [PMID: 22286905]
  95. Environ Microbiol. 2008 Oct;10(10):2728-45 [PMID: 18637950]
  96. Appl Environ Microbiol. 2005 Jan;71(1):20-8 [PMID: 15640165]
  97. Nat Methods. 2010 Apr;7(4):248-9 [PMID: 20354512]
  98. Front Microbiol. 2018 Dec 05;9:2962 [PMID: 30568639]
  99. Water Res. 2017 Oct 15;123:761-772 [PMID: 28732329]
  100. J Clin Microbiol. 1991 Mar;29(3):475-8 [PMID: 2037664]
  101. Water Sci Technol. 2004;50(1):83-90 [PMID: 15318491]
  102. Water Res. 2013 Nov 1;47(17):6606-17 [PMID: 24064547]
  103. Front Microbiol. 2020 Dec 15;11:589369 [PMID: 33384668]
  104. Microorganisms. 2020 Dec 18;8(12): [PMID: 33352932]
  105. Appl Environ Microbiol. 2006 Jan;72(1):378-83 [PMID: 16391067]
  106. Appl Environ Microbiol. 2008 Mar;74(5):1639-41 [PMID: 18192431]
  107. J Appl Microbiol. 2015 Jul;119(1):278-88 [PMID: 25891145]
  108. J Infect Dis. 2002 Jul 1;186(1):127-8 [PMID: 12089674]
  109. Int J Environ Res Public Health. 2015 Oct 27;12(10):13649-61 [PMID: 26516885]
  110. Int J Immunopathol Pharmacol. 2010 Jan-Mar;23(1):227-34 [PMID: 20378008]
  111. Microbes Infect. 2001 Oct;3(12):985-95 [PMID: 11580985]
  112. Water Res. 2012 Mar 15;46(4):921-33 [PMID: 22209280]
  113. N Engl J Med. 1997 Sep 4;337(10):682-7 [PMID: 9278466]
  114. Int J Hyg Environ Health. 2018 Mar;221(2):199-210 [PMID: 29108681]
  115. Int J Environ Res Public Health. 2016 Dec 24;14(1): [PMID: 28029126]
  116. Front Environ Sci. 2021 Nov 10;9:1-22 [PMID: 35004706]
  117. Sci Total Environ. 2021 May 20;770:145356 [PMID: 33736415]
  118. MMWR Surveill Summ. 2011 Sep 23;60(12):38-68 [PMID: 21937977]
  119. Environ Health Perspect. 2019 Dec;127(12):127001 [PMID: 31799878]
  120. Appl Environ Microbiol. 2019 Nov 27;85(24): [PMID: 31604766]
  121. Water Res. 2018 Sep 15;141:428-438 [PMID: 29409685]
  122. Front Microbiol. 2021 Apr 23;12:625324 [PMID: 33967975]
  123. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  124. Sci Total Environ. 2019 Jun 25;671:404-410 [PMID: 30933796]
  125. Environ Sci Technol. 2020 Dec 15;54(24):15914-15924 [PMID: 33232602]
  126. Case Rep Pulmonol. 2015;2015:535012 [PMID: 26451267]
  127. J Appl Microbiol. 2011 Apr;110(4):1032-44 [PMID: 21276147]
  128. Water Res. 2017 Jun 15;117:68-86 [PMID: 28390237]
  129. Water Res. 2019 Apr 15;153:335-348 [PMID: 30743084]
  130. Appl Environ Microbiol. 2013 Feb;79(3):825-34 [PMID: 23160134]
  131. Infect Genet Evol. 2018 Apr;59:172-185 [PMID: 29427765]
  132. J Water Health. 2019 Oct;17(5):777-787 [PMID: 31638028]

Grants

  1. EPA999999/Intramural EPA

MeSH Term

Chlorine
Drinking Water
Legionella
Mycobacterium
Water Microbiology

Chemicals

Drinking Water
Chlorine

Word Cloud

Created with Highcharts 10.0.0waterDWDSsLegionellaOPsconcentrationsconcentrationresidualOPqualityparametersdisinfectantMycobacteriumPseudomonaschloraminatedresidualsHRTfourtotalvariationsopportunisticpathogensespeciallyUScontroldrinkingdistributionsystemsstudyphysicochemicalvermiformisfull-scalecorrelatedsignificantchlorinefreeammoniatrihalomethanepromisingindicatormicrobialincreasedWater-basedleadingcausedrinking-water-relateddiseaseoutbreaksdevelopedcountriesUnitedStatesPhysicochemicalregrowthpresencecolonizationrelationshipremainunclearaimedquantifymainlymonochloraminehydraulicresidencetimeseasonalityaffectedoccurrencecommonVermamoebadominantoccurred938%64samplingeventsmeandensity427 �� 10genomecopiesperliterpositivelybacteriaMultipleregressiondatashowedcorrelationslevelThereforewater-basedreflectingstrongseasonalpeakedwinterand/orspringpossiblyreducedusageiestagnationcoldseasonsgenerallypresumablydecayindicatingimportancewell-maintainingVsignificantlyassociatedpHrespectivelyOveralldemonstratesspatiotemporalcriticallevelsworkalsoindicatesmunicipalDisinfectantIndicatorMonochloramineSpatiotemporal

Similar Articles

Cited By