Clustering spatio-temporal series of confirmed COVID-19 deaths in Europe.

A Bucci, L Ippoliti, P Valentini, S Fontanella
Author Information
  1. A Bucci: Department of Economics, University G. d'Annunzio, Chieti-Pescara, Italy.
  2. L Ippoliti: Department of Economics, University G. d'Annunzio, Chieti-Pescara, Italy.
  3. P Valentini: Department of Economics, University G. d'Annunzio, Chieti-Pescara, Italy.
  4. S Fontanella: National Heart and Lung Institute, Imperial College London, UK.

Abstract

The impact of the COVID-19 pandemic varied significantly across different countries, with important consequences in the definition of control and response strategies. In this work, to investigate the heterogeneity of this crisis, we analyse the spatial patterns of deaths attributed to COVID-19 in several European countries. To this end, we propose a Bayesian nonparametric approach, based on mixture of Gaussian processes coupled with Dirichlet process, to group the COVID-19 mortality curves. The model provides a flexible framework for the analysis of time series data, allowing the inclusion in the clustering procedure of different features of the series, such as spatial correlations, time varying parameters and measurement errors. We evaluate the proposed methodology on the death counts recorded at NUTS-2 regional level for several European countries in the period from March 2020 to February 2021.

Keywords

References

  1. J Environ Health Sci Eng. 2020 Oct 12;18(2):1499-1507 [PMID: 33072340]
  2. Spat Stat. 2022 Jun;49:100526 [PMID: 34249608]
  3. Biom J. 2021 Mar;63(3):503-513 [PMID: 33251604]
  4. Spat Stat. 2022 Jun;49:100538 [PMID: 34493970]
  5. Technometrics. 2012 May 1;54(2):129-133 [PMID: 24976650]
  6. Bayesian Anal. 2010;5(3):1-22 [PMID: 20865145]
  7. Nature. 2020 Aug;584(7820):262-267 [PMID: 32512578]
  8. Spat Stat. 2020 Aug;38:100443 [PMID: 32292691]
  9. Science. 2021 Apr 9;372(6538): [PMID: 33658326]
  10. Spat Stat. 2022 Jun;49:100504 [PMID: 33816095]
  11. PLoS Med. 2005 Mar;2(3):e59 [PMID: 15719066]
  12. Spat Stat. 2022 Jun;49:100519 [PMID: 33996424]
  13. J Popul Res (Canberra). 2021 Mar 6;:1-9 [PMID: 33758578]
  14. Spat Spatiotemporal Epidemiol. 2018 Aug;26:25-34 [PMID: 30390932]
  15. Spat Stat. 2022 Jun;49:100531 [PMID: 35722170]
  16. Spat Stat. 2022 Jun;49:100508 [PMID: 33868908]
  17. BMC Infect Dis. 2020 Oct 30;20(1):805 [PMID: 33126857]

Word Cloud

Created with Highcharts 10.0.0COVID-19countriesseriesdifferentspatialdeathsseveralEuropeananalysistimeclusteringimpactpandemicvariedsignificantlyacrossimportantconsequencesdefinitioncontrolresponsestrategiesworkinvestigateheterogeneitycrisisanalysepatternsattributedendproposeBayesiannonparametricapproachbasedmixtureGaussianprocessescoupledDirichletprocessgroupmortalitycurvesmodelprovidesflexibleframeworkdataallowinginclusionprocedurefeaturescorrelationsvaryingparametersmeasurementerrorsevaluateproposedmethodologydeathcountsrecordedNUTS-2regionallevelperiodMarch2020February2021Clusteringspatio-temporalconfirmedEuropeBayesnonparametricsDynamiclinearmodelsModel-basedSpatio-temporal

Similar Articles

Cited By