Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales.

Christina-Marie Boghdady, Nikita Kalashnikov, Stephanie Mok, Luke McCaffrey, Christopher Moraes
Author Information
  1. Christina-Marie Boghdady: Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada. ORCID
  2. Nikita Kalashnikov: Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada. ORCID
  3. Stephanie Mok: Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada. ORCID

Abstract

Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses , and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.

References

  1. Cancer Metastasis Rev. 2009 Jun;28(1-2):113-27 [PMID: 19153673]
  2. Integr Biol (Camb). 2012 Oct;4(10):1164-74 [PMID: 22961409]
  3. Biophys J. 2020 Mar 10;118(5):1177-1182 [PMID: 32049055]
  4. Nat Mater. 2016 Sep;15(9):961-967 [PMID: 27240108]
  5. Elife. 2020 Jun 02;9: [PMID: 32484778]
  6. Nature. 2018 Sep;561(7723):401-405 [PMID: 30185907]
  7. Mech Chem Biosyst. 2005;2(1):1-16 [PMID: 16708468]
  8. Science. 1980 Apr 11;208(4440):177-9 [PMID: 6987736]
  9. Sci Rep. 2017 Sep 20;7(1):12022 [PMID: 28931891]
  10. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1943-8 [PMID: 21245302]
  11. Adv Mater. 2013 Mar 25;25(12):1699-705 [PMID: 23355085]
  12. Anal Chem. 2005 Oct 15;77(20):6571-80 [PMID: 16223242]
  13. Cell Rep. 2018 Mar 20;22(12):3191-3205 [PMID: 29562176]
  14. ACS Chem Biol. 2020 Jul 17;15(7):1731-1746 [PMID: 32530602]
  15. PLoS One. 2016 Jun 15;11(6):e0156797 [PMID: 27304456]
  16. Nat Methods. 2014 Dec;11(12):1229-32 [PMID: 25306545]
  17. Biophys J. 2008 Oct;95(7):3479-87 [PMID: 18586852]
  18. Tissue Eng Part A. 2012 May;18(9-10):910-9 [PMID: 22092279]
  19. J Cell Biol. 1996 Jun;133(6):1403-15 [PMID: 8682874]
  20. Nat Nanotechnol. 2010 Jul;5(7):520-4 [PMID: 20562873]
  21. Mol Biol Cell. 2001 Sep;12(9):2730-41 [PMID: 11553712]
  22. Biophys J. 2013 Nov 19;105(10):2240-51 [PMID: 24268136]
  23. Annu Rev Physiol. 1997;59:575-99 [PMID: 9074778]
  24. Nat Methods. 2014 Feb;11(2):183-9 [PMID: 24317254]
  25. Soft Matter. 2019 Feb 20;15(8):1721-1729 [PMID: 30657157]
  26. Sci Rep. 2019 Mar 11;9(1):4086 [PMID: 30858424]
  27. J Biomech. 2017 Dec 8;65:194-202 [PMID: 29126605]
  28. Tissue Eng Part A. 2012 Jul;18(13-14):1322-33 [PMID: 22500611]
  29. Proc Natl Acad Sci U S A. 2018 May 1;115(18):4631-4636 [PMID: 29666253]
  30. ACS Cent Sci. 2019 Jul 24;5(7):1146-1158 [PMID: 31403068]
  31. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4698-707 [PMID: 24255110]
  32. Nat Cell Biol. 2001 May;3(5):466-72 [PMID: 11331874]
  33. Soft Matter. 2014 Mar 28;10(12):1885-90 [PMID: 24652538]
  34. Am J Physiol Cell Physiol. 2004 Mar;286(3):C518-28 [PMID: 14761883]
  35. Nat Rev Cancer. 2014 Jul;14(7):495-501 [PMID: 24943812]
  36. J Cell Biol. 2006 Sep 11;174(6):767-72 [PMID: 16966418]
  37. Nat Protoc. 2009;4(6):939-46 [PMID: 19478809]
  38. Sci Rep. 2020 Apr 3;10(1):5837 [PMID: 32246004]
  39. Lab Chip. 2013 Sep 21;13(18):3599-608 [PMID: 23807141]
  40. J Cell Sci. 2004 Mar 15;117(Pt 8):1503-11 [PMID: 15020677]
  41. Integr Biol (Camb). 2010 Sep;2(9):424-34 [PMID: 20717570]
  42. Mol Biol Cell. 2020 Jul 1;31(14):1474-1485 [PMID: 32374653]
  43. Mech Dev. 2017 Apr;144(Pt A):92-101 [PMID: 27913119]
  44. Biomaterials. 2010 Jan;31(3):577-84 [PMID: 19819010]
  45. Biomed Microdevices. 2018 Sep 26;20(4):85 [PMID: 30259169]
  46. Front Biosci. 2004 Sep 01;9:2177-82 [PMID: 15353279]
  47. Lab Chip. 2012 Dec 7;12(23):4976-85 [PMID: 22976544]
  48. Biophys J. 2001 Apr;80(4):1744-57 [PMID: 11259288]
  49. Nat Methods. 2016 Feb;13(2):171-6 [PMID: 26641311]
  50. PLoS One. 2014 Sep 24;9(9):e107895 [PMID: 25251154]
  51. Acc Chem Res. 2014 Jun 17;47(6):1691-9 [PMID: 24720250]
  52. PLoS One. 2013;8(2):e55172 [PMID: 23468843]
  53. Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):163-79 [PMID: 18406455]
  54. Nat Commun. 2019 Apr 23;10(1):1850 [PMID: 31015429]
  55. Expert Opin Drug Discov. 2021 Feb;16(2):159-171 [PMID: 32988224]
  56. Acta Biomater. 2017 Jan 15;48:68-78 [PMID: 27818308]
  57. Integr Biol (Camb). 2012 Oct;4(10):1289-98 [PMID: 22935822]
  58. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1472-4 [PMID: 12578965]
  59. Dev Cell. 2018 Feb 5;44(3):284-296 [PMID: 29408235]
  60. Circ Arrhythm Electrophysiol. 2015 Feb;8(1):193-202 [PMID: 25504561]
  61. FASEB J. 2006 May;20(7):811-27 [PMID: 16675838]
  62. BMC Med. 2006 Dec 26;4(1):38 [PMID: 17190588]
  63. Cell Mol Bioeng. 2010 Mar 1;3(1):68-75 [PMID: 21116436]
  64. Nature. 1981 Mar 19;290(5803):249-51 [PMID: 7207616]
  65. Biophys J. 2016 Jul 12;111(1):197-207 [PMID: 27410747]
  66. Sci Rep. 2019 Nov 19;9(1):17031 [PMID: 31745109]
  67. Circ Res. 2002 Nov 15;91(10):877-87 [PMID: 12433832]
  68. Mol Biol Cell. 2017 Jul 7;28(14):1959-1974 [PMID: 28592635]
  69. Med Hypotheses. 1991 Jan;34(1):88-95 [PMID: 2056936]
  70. Oncotarget. 2015 Dec 22;6(41):43438-51 [PMID: 26528856]
  71. Cell. 2019 Feb 7;176(4):913-927.e18 [PMID: 30686581]
  72. Biophys J. 2000 Jul;79(1):144-52 [PMID: 10866943]
  73. Lab Chip. 2015 Jun 7;15(11):2496-503 [PMID: 25959132]
  74. Acta Biomater. 2017 Jan 15;48:79-87 [PMID: 27818306]
  75. Biophys J. 2000 Nov;79(5):2353-68 [PMID: 11053115]
  76. Nat Cell Biol. 2008 Dec;10(12):1401-10 [PMID: 18978783]
  77. Genes Dev. 2017 Aug 1;31(15):1573-1587 [PMID: 28887414]
  78. Science. 1993 May 21;260(5111):1124-7 [PMID: 7684161]
  79. Biophys J. 1996 Apr;70(4):2008-22 [PMID: 8785360]
  80. Sci Rep. 2015 Jul 13;5:11458 [PMID: 26165921]
  81. Mol Biol Cell. 1999 Apr;10(4):935-45 [PMID: 10198048]
  82. Cancer Converg. 2017;1(1):1 [PMID: 29623954]
  83. Biomaterials. 2013 Dec;34(37):9623-31 [PMID: 24034500]
  84. Nat Cell Biol. 2017 Jul;19(7):742-751 [PMID: 28628082]
  85. Ann Biomed Eng. 2010 Mar;38(3):1148-61 [PMID: 20140519]
  86. Nat Commun. 2020 Nov 18;11(1):5883 [PMID: 33208732]
  87. Biomaterials. 2010 May;31(13):3613-21 [PMID: 20149449]
  88. Sci Rep. 2020 May 6;10(1):7696 [PMID: 32376876]
  89. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 [PMID: 12552122]
  90. Lab Chip. 2012 Feb 21;12(4):731-40 [PMID: 22193351]
  91. Adv Healthc Mater. 2020 Apr;9(8):e1901373 [PMID: 32090507]
  92. Tissue Eng Part A. 2017 Jun;23(11-12):535-545 [PMID: 28125933]
  93. Biomaterials. 2014 Jun;35(19):5056-64 [PMID: 24630092]
  94. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19017-22 [PMID: 19850871]
  95. Biophys Rev. 2019 Jun;11(3):311-318 [PMID: 31073958]
  96. Semin Cell Dev Biol. 2017 Jul;67:161-169 [PMID: 27496334]
  97. Mol Biol Cell. 2005 Feb;16(2):507-18 [PMID: 15548591]
  98. Nat Phys. 2014 Sep;10(9):683-690 [PMID: 27340423]
  99. Nat Cell Biol. 2000 Jun;2(6):313-7 [PMID: 10854320]
  100. Acta Biomater. 2012 Jan;8(1):82-8 [PMID: 21884832]
  101. ACS Biomater Sci Eng. 2020 Jul 13;6(7):4236-4246 [PMID: 32685675]
  102. Nature. 2012 Apr 15;484(7395):546-9 [PMID: 22504183]
  103. PLoS One. 2019 Sep 12;14(9):e0221753 [PMID: 31513673]
  104. Biomed Opt Express. 2012 Jan 1;3(1):153-9 [PMID: 22254175]
  105. Lab Chip. 2011 Dec 21;11(24):4165-73 [PMID: 22072288]
  106. Nat Methods. 2010 Dec;7(12):969-71 [PMID: 21076420]
  107. Chem Rev. 2017 Oct 25;117(20):12764-12850 [PMID: 28991456]
  108. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4708-13 [PMID: 21383129]
  109. Int Rev Cytol. 1994;150:173-224 [PMID: 8169080]
  110. Tissue Eng Part C Methods. 2019 Nov;25(11):677-686 [PMID: 31411125]
  111. J Cell Biol. 1994 Dec;127(6 Pt 2):1957-64 [PMID: 7806573]
  112. Exp Cell Res. 2013 Oct 1;319(16):2418-23 [PMID: 23664834]
  113. Nat Protoc. 2011 Feb;6(2):187-213 [PMID: 21293460]
  114. J Mol Biol. 2008 Apr 4;377(4):1082-93 [PMID: 18313694]
  115. Nat Methods. 2011 Oct 30;9(1):64-7 [PMID: 22037704]
  116. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1274-8 [PMID: 286310]
  117. Nat Commun. 2018 May 14;9(1):1878 [PMID: 29760452]
  118. J Cell Sci. 2004 May 1;117(Pt 11):2203-14 [PMID: 15126622]
  119. Am J Physiol Cell Physiol. 2002 Mar;282(3):C617-24 [PMID: 11832347]
  120. Lab Chip. 2014 Jul 7;14(13):2191-201 [PMID: 24632936]
  121. Osteoarthritis Cartilage. 1999 Jan;7(1):81-94 [PMID: 10367017]
  122. Nat Commun. 2016 Mar 16;7:11036 [PMID: 26980715]
  123. Adv Funct Mater. 2013 Aug 12;23(30):3738-3746 [PMID: 26213529]
  124. Biulleten Sib Meditsiny. 2020;19(2):85-95 [PMID: 32863830]
  125. Biophys J. 2006 May 15;90(10):3762-73 [PMID: 16500961]
  126. Rev Sci Instrum. 2008 Apr;79(4):044302 [PMID: 18447536]
  127. Biol Open. 2013 Mar 15;2(3):351-61 [PMID: 23519595]
  128. PLoS Comput Biol. 2019 Apr 8;15(4):e1006684 [PMID: 30958816]
  129. Nat Commun. 2020 Jan 7;11(1):20 [PMID: 31911639]
  130. Nat Commun. 2017 Oct 10;8(1):842 [PMID: 29018207]
  131. Soft Matter. 2017 Jun 14;13(23):4210-4213 [PMID: 28580466]
  132. Chest. 1991 Mar;99(3 Suppl):34S-40S [PMID: 1705196]
  133. Cell Biochem Biophys. 2019 Dec;77(4):293-308 [PMID: 31598831]
  134. Biophys J. 2002 Jun;82(6):3314-29 [PMID: 12023254]
  135. Nat Phys. 2020 Jan;16(1):101-108 [PMID: 32905405]
  136. J Biomech. 2011 Oct 13;44(15):2699-705 [PMID: 21864841]
  137. Nano Lett. 2013 Sep 11;13(9):3985-9 [PMID: 23859772]
  138. Nat Cell Biol. 2018 Oct;20(10):1126-1133 [PMID: 30202051]
  139. PLoS One. 2009 Jul 24;4(7):e6382 [PMID: 19629190]
  140. Nature. 2010 Jul 8;466(7303):263-6 [PMID: 20613844]
  141. Biomaterials. 2014 Jul;35(21):5462-71 [PMID: 24731714]
  142. ACS Biomater Sci Eng. 2019 Sep 9;5(9):4341-4354 [PMID: 31517039]
  143. Acc Chem Res. 2017 Dec 19;50(12):2915-2924 [PMID: 29160067]
  144. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6933-8 [PMID: 22509005]
  145. Nat Commun. 2020 Sep 21;11(1):4757 [PMID: 32958771]
  146. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2390-5 [PMID: 15695588]
  147. Science. 1997 May 16;276(5315):1109-12 [PMID: 9148804]
  148. Nat Methods. 2010 Sep;7(9):733-6 [PMID: 20676108]
  149. Dev Biol. 1982 Apr;90(2):383-98 [PMID: 7075867]
  150. Development. 2017 Dec 1;144(23):4249-4260 [PMID: 29183938]
  151. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14553-8 [PMID: 17804810]
  152. Biophys J. 2002 Apr;82(4):2211-23 [PMID: 11916876]
  153. Nat Commun. 2019 Mar 12;10(1):1186 [PMID: 30862791]
  154. Nat Commun. 2019 May 3;10(1):2051 [PMID: 31053712]
  155. J Mol Cell Cardiol. 2018 May;118:147-158 [PMID: 29604261]
  156. Soft Matter. 2014 Oct 28;10(40):8095-106 [PMID: 25170569]
  157. Cancer Cell. 2005 Sep;8(3):241-54 [PMID: 16169468]
  158. J Cell Sci. 1993 Mar;104 ( Pt 3):613-27 [PMID: 8314865]
  159. J Mammary Gland Biol Neoplasia. 2004 Oct;9(4):325-42 [PMID: 15838603]
  160. Science. 2013 May 24;340(6135):991-4 [PMID: 23704575]
  161. Integr Biol (Camb). 2015 Oct;7(10):1265-1271 [PMID: 26143887]
  162. Nat Commun. 2019 Jan 11;10(1):144 [PMID: 30635553]
  163. Nat Biomed Eng. 2018 Dec;2(12):955-967 [PMID: 31015724]
  164. Heliyon. 2017 May 30;3(5):e00307 [PMID: 28607953]
  165. PLoS One. 2019 May 23;14(5):e0217227 [PMID: 31120960]
  166. Science. 2012 Oct 12;338(6104):257-60 [PMID: 23066079]
  167. Circ Res. 2010 Jul 9;107(1):35-44 [PMID: 20448218]
  168. Rep Prog Phys. 2014 Apr;77(4):046603 [PMID: 24695087]
  169. Nat Methods. 2016 Apr 28;13(5):415-23 [PMID: 27123817]
  170. Science. 2007 Sep 7;317(5843):1366-70 [PMID: 17823347]
  171. PLoS One. 2020 Jan 16;15(1):e0220019 [PMID: 31945053]
  172. FEBS Lett. 2003 Jan 16;534(1-3):7-10 [PMID: 12527354]
  173. Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2220-9 [PMID: 22447948]
  174. Biophys J. 2014 Dec 2;107(11):2592-603 [PMID: 25468338]
  175. Am J Physiol Cell Physiol. 2002 Mar;282(3):C606-16 [PMID: 11832346]
  176. Science. 1992 Nov 13;258(5085):1122-6 [PMID: 1439819]
  177. Nat Cell Biol. 2010 Jun;12(6):598-604 [PMID: 20473295]
  178. Biomech Model Mechanobiol. 2014 Jun;13(3):665-78 [PMID: 24022327]
  179. Biophys J. 1999 Apr;76(4):2307-16 [PMID: 10096925]
  180. Cell Motil Cytoskeleton. 1995;31(3):225-40 [PMID: 7585992]
  181. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12568-73 [PMID: 22802638]
  182. Am J Physiol Cell Physiol. 2002 Mar;282(3):C595-605 [PMID: 11832345]
  183. Biophys J. 2012 Jul 3;103(1):152-62 [PMID: 22828342]
  184. J Cell Sci. 2003 Apr 15;116(Pt 8):1481-91 [PMID: 12640033]
  185. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5328-33 [PMID: 22431603]
  186. Am J Physiol Lung Cell Mol Physiol. 2013 Jan 1;304(1):L4-16 [PMID: 23125251]
  187. J Cell Biol. 2001 May 14;153(4):881-8 [PMID: 11352946]
  188. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10097-102 [PMID: 19541627]
  189. Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5655-5663 [PMID: 32123100]
  190. ACS Biomater Sci Eng. 2019 Aug 12;5(8):3843-3855 [PMID: 33438424]
  191. Lab Chip. 2017 Oct 25;17(21):3692-3703 [PMID: 28976521]
  192. ACS Appl Mater Interfaces. 2019 Dec 26;11(51):47810-47821 [PMID: 31773938]
  193. Sci Rep. 2016 Sep 27;6:33919 [PMID: 27671239]
  194. Nat Methods. 2017 Feb;14(2):181-186 [PMID: 27918540]
  195. Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4075-4080 [PMID: 29618614]
  196. Nat Commun. 2014 Oct 24;5:5167 [PMID: 25342432]
  197. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7426-31 [PMID: 12032299]
  198. J Mater Chem B. 2018 Oct 21;6(39):6245-6261 [PMID: 32254615]
  199. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9377-9383 [PMID: 32284424]
  200. Biomed Microdevices. 2018 May 28;20(2):43 [PMID: 29808253]
  201. Biofabrication. 2018 Jan 16;10(2):025004 [PMID: 29337695]
  202. Nanotechnology. 2012 Feb 24;23(7):075101 [PMID: 22260885]
  203. Nat Commun. 2018 May 25;9(1):2066 [PMID: 29802256]
  204. Biol Cell. 2006 Dec;98(12):721-30 [PMID: 16895521]
  205. Biophys J. 2015 Dec 1;109(11):2259-67 [PMID: 26636937]
  206. Nat Commun. 2019 Jul 10;10(1):3029 [PMID: 31292444]
  207. Nat Mater. 2011 Jun;10(6):469-75 [PMID: 21602808]
  208. Nat Commun. 2017 Jan 27;8:14056 [PMID: 28128198]
  209. Nat Mater. 2017 Mar;16(3):303-308 [PMID: 27775708]
  210. ACS Appl Mater Interfaces. 2019 Jul 24;11(29):26307-26313 [PMID: 31298522]
  211. ACS Biomater Sci Eng. 2019 Aug 12;5(8):3856-3863 [PMID: 33438425]
  212. J Cell Biol. 2010 Jan 25;188(2):287-97 [PMID: 20100912]

Word Cloud

Created with Highcharts 10.0.0tissuemechanicalforcesbiologicallengthscalesroledynamicshomeostasisprocessescellmorphogenesisacrossmeasureprovideCell-generatedplayfoundationalcriticallyimportantseveralincludingmigrationwoundhealingcancermetastasisQuantifyingtechnicallychallengingrequiresnovelstrategiescaptureinformationmolecularcellularallowingstudiesperformedphysiologicallyrealisticmodelsAdvancedbiomaterialscandesignednon-destructivelystressesreviewcharacterizationsforce-sensingbiomaterial-basedtechnologiesinsightnaturespecificallyuniquelyfocususetechniquesidentifycharacteristics"tensegrity:"hierarchicalmodularinterplaytensioncompressiontissuesremarkablepropertiesbehaviorsBasedobservedpatternshighlightdiscussemergingtensegritymultiplepathologicaldysfunctionRevisitingtensegrity:Biomaterial-basedapproaches

Similar Articles

Cited By